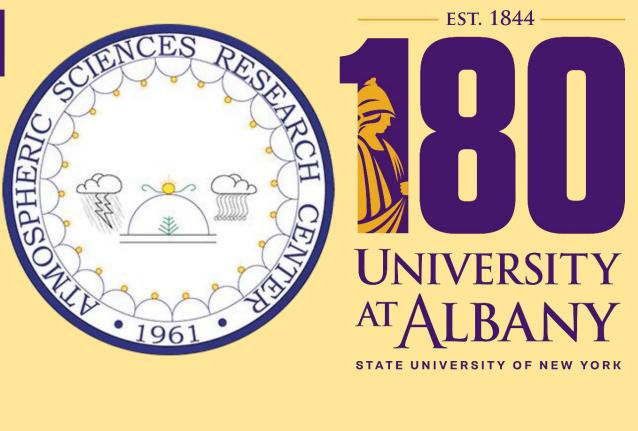
GE@S-Chem-APM for (1) physics-guided machine learning parameterizations

& (2) aerosol pollution exposure and health disparities assessment

Funding:

NYSERDA

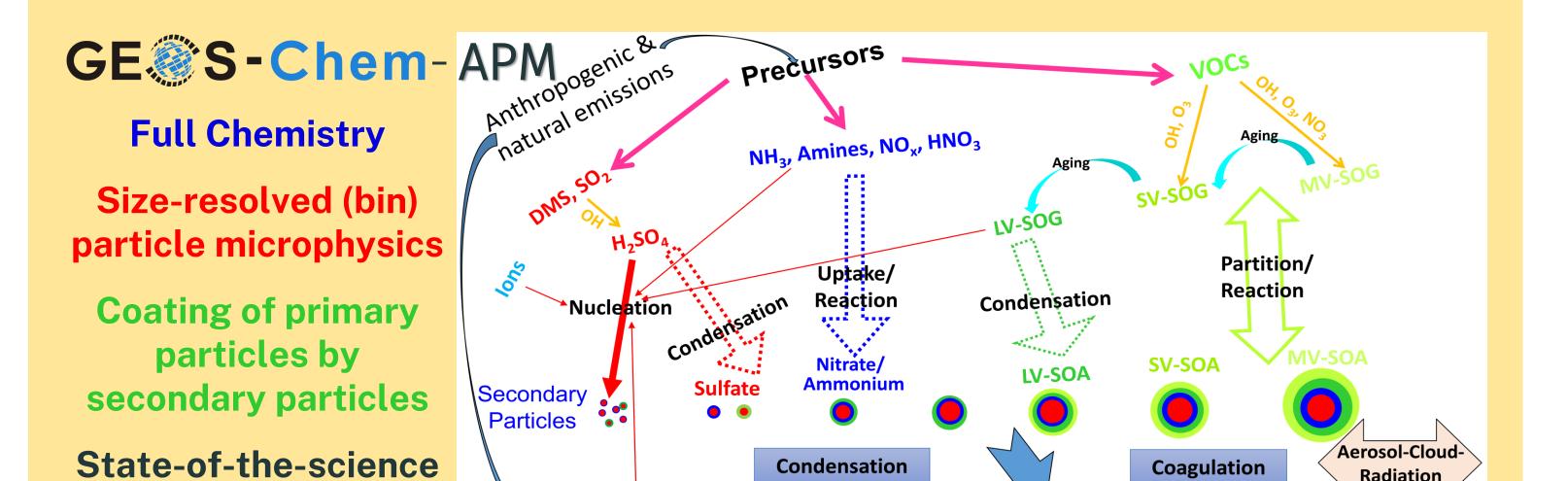


Research Tool

nucleation

mechanisms

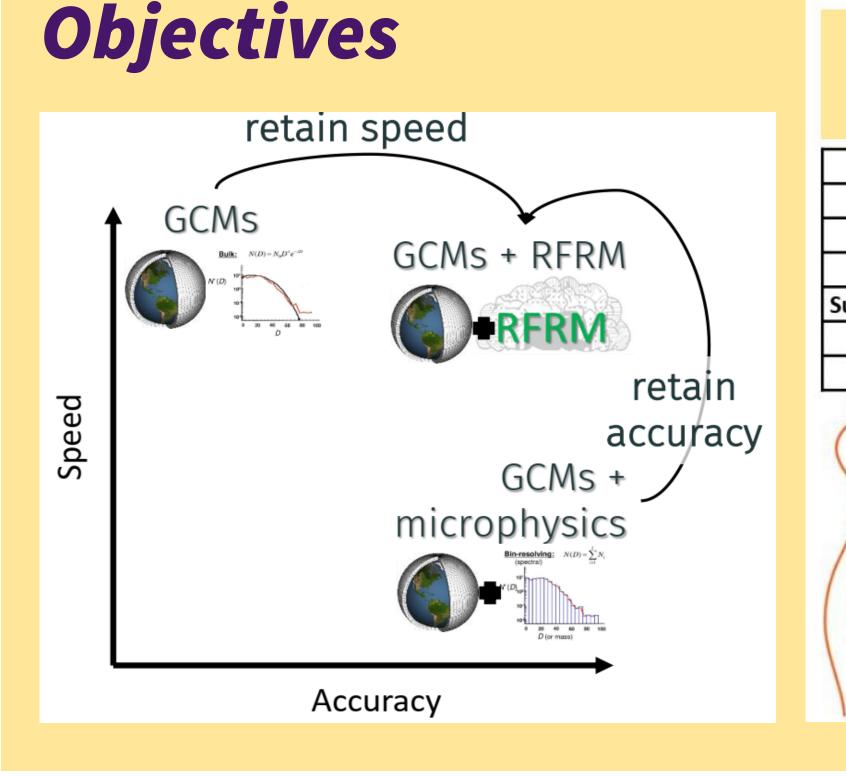
(Yu et al., GMD 2020)



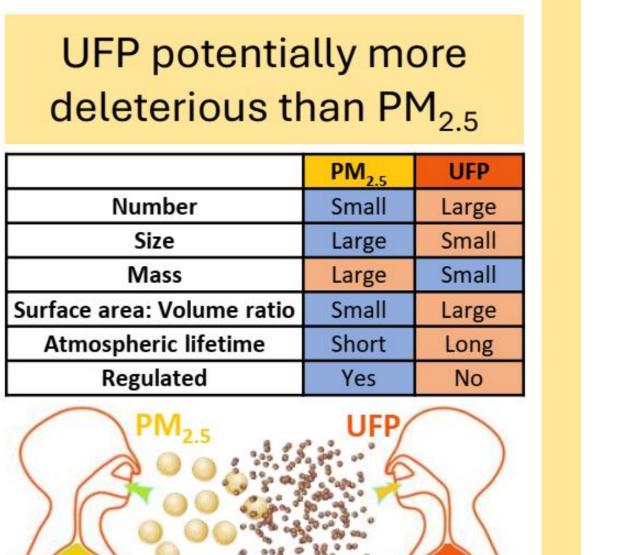
Arshad Arjunan Nair (aanair@albany.edu)

Atmospheric Sciences Research Center

State University of New York at Albany, NY 12226



Partner

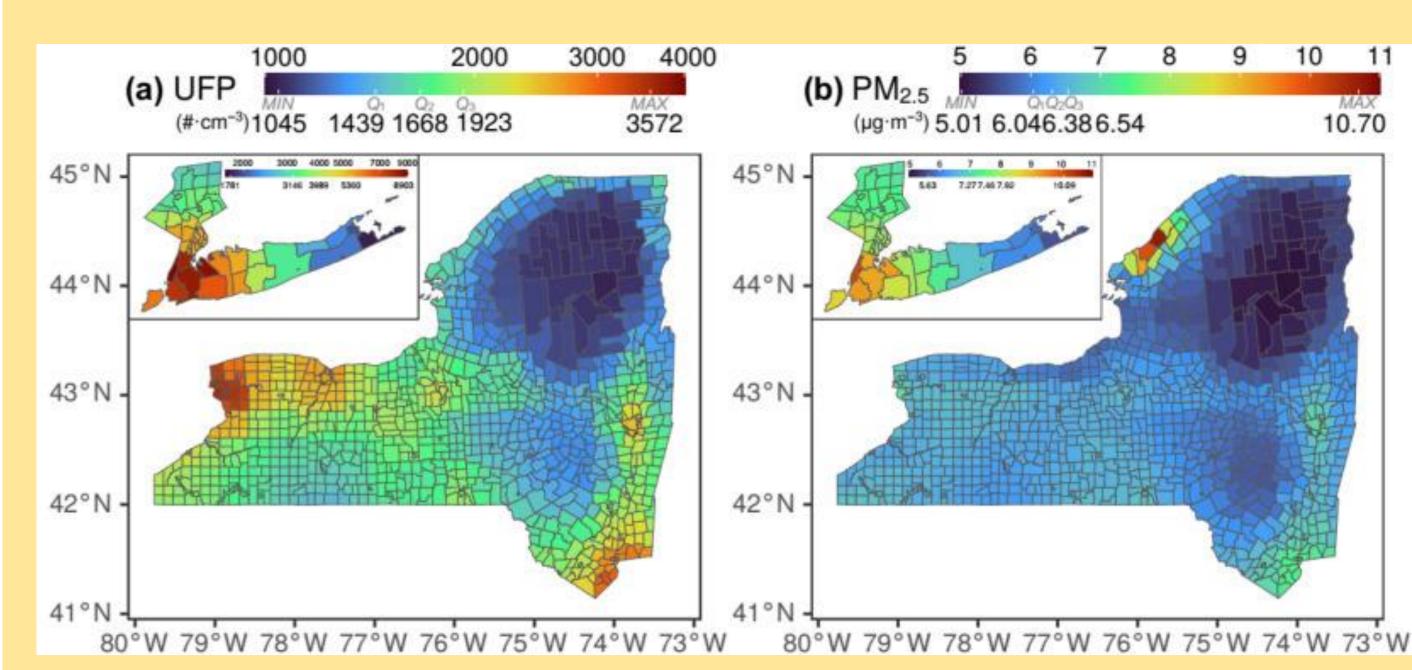


Efficient penetration

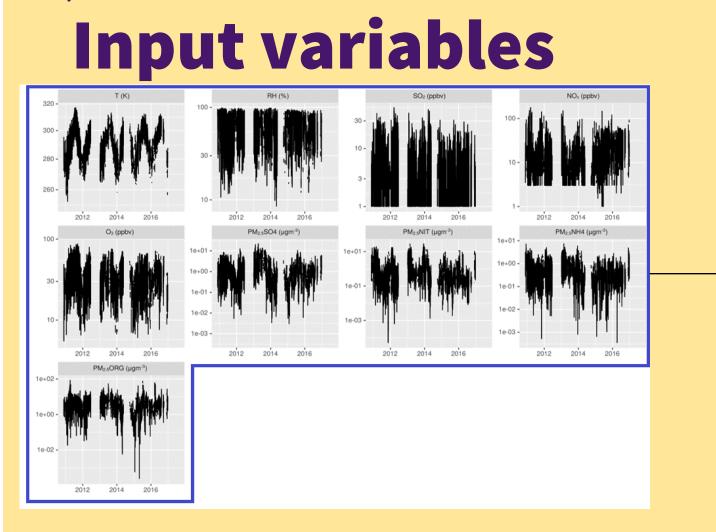
Easily crosses phase barriers

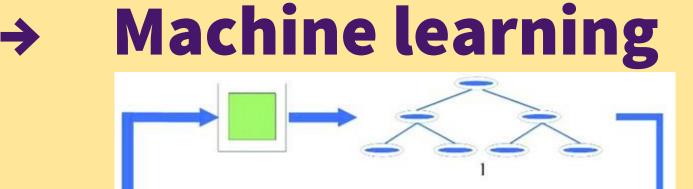
Higher stress & inflammation

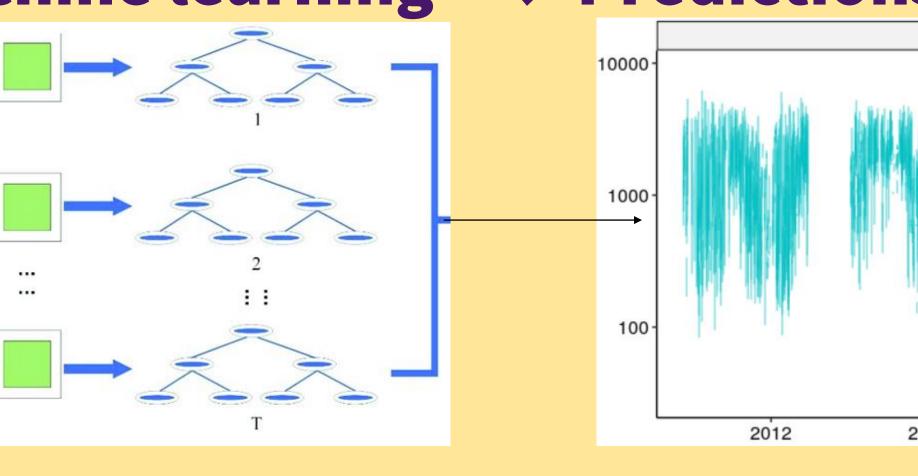
Domain for health-effects studies



Machine Learning of Aerosol Properties







Atmos. Chem. Phys., 20, 12853–12869, 2020 https://doi.org/10.5194/acp-20-12853-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. © **⊕**

Atmospheric Chemistry and Physics

AGU ADVANCING EARTH AND SPACE SCIENCE

ADVANCING EARTH AND SPACE SCIENCE

KORUS-AQ: 2016/05/18

Using machine learning to derive cloud condensation nuclei number concentrations from commonly available measurements

Arshad Arjunan Nair and Fangqun Yu

Atmospheric Sciences Research Center, State University of New York, Albany, New York 12203, USA

- ML trained on long-term GEOS-Chem-APM simulations
- Predictors: fractions of PM_{2.5} (NH₄, SO₄, NO₃, SOA, BC, POC, dust, and salt), gaseous species (NO_x, NH₃, O₃, SO₂, OH, isoprene, and monoterpene), and meteorological variables (T, RH, precipitation, and solar radiation)
- Also captures [CCN0.4] variability & magnitude at ARM SGP

Geophysical Research Letters

Machine Learning Uncovers Aerosol Size Information From Chemistry and Meteorology to Quantify Potential Cloud-Forming Particles

Arshad Arjunan Nair¹ (0), Fangqun Yu¹ (0), Pedro Campuzano-Jost²,³ (0), Paul J. DeMott⁴ (0), Ezra J. T. Levin^{4,5} , Jose L. Jimenez^{2,3} , Jeff Peischl^{2,6} , Ilana B. Pollack⁴ , Carley D. Fredrickson⁷ , Andreas J. Beyersdorf^{8,9} , Benjamin A. Nault^{2,3,10} Minsu Park¹¹ , Seong Soo Yum¹¹ , Brett B. Palm⁷ , Lu Xu^{12,13} , Ilann Bourgeois^{2,6} Bruce E. Anderson⁸ (D), Athanasios Nenes^{14,15,16} (D), Luke D. Ziemba⁸ (D) Richard H. Moore⁸, Taehyoung Lee¹⁷, Taehyun Park¹⁷, Chelsea R. Thompson^{2,6}, Frank Flocke¹⁸ , Lewis Gregory Huey¹⁹ , Michelle J. Kim¹² , and Qiaoyun Peng⁷

- ML-derived CCN numbers in strong agreement with multicampaign aircraft measurements
- Aerosol size information is contained in speciated aerosol mass, chemistry, and meteorology and is extractable by ML

Geophysical Research Letters

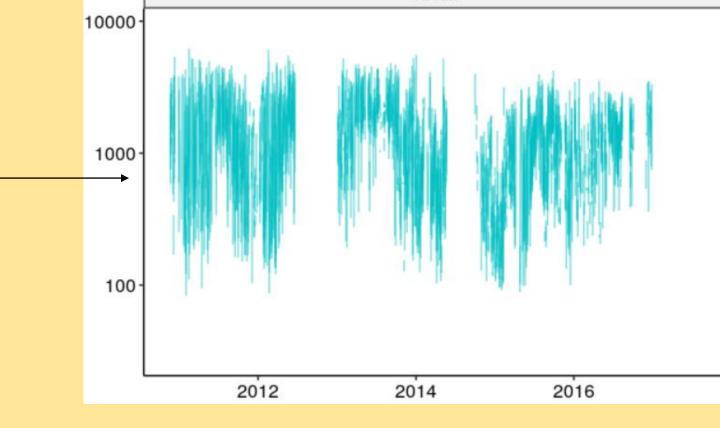
Use of Machine Learning to Reduce Uncertainties in Particle Number Concentration and Aerosol Indirect Radiative Forcing **Predicted by Climate Models**

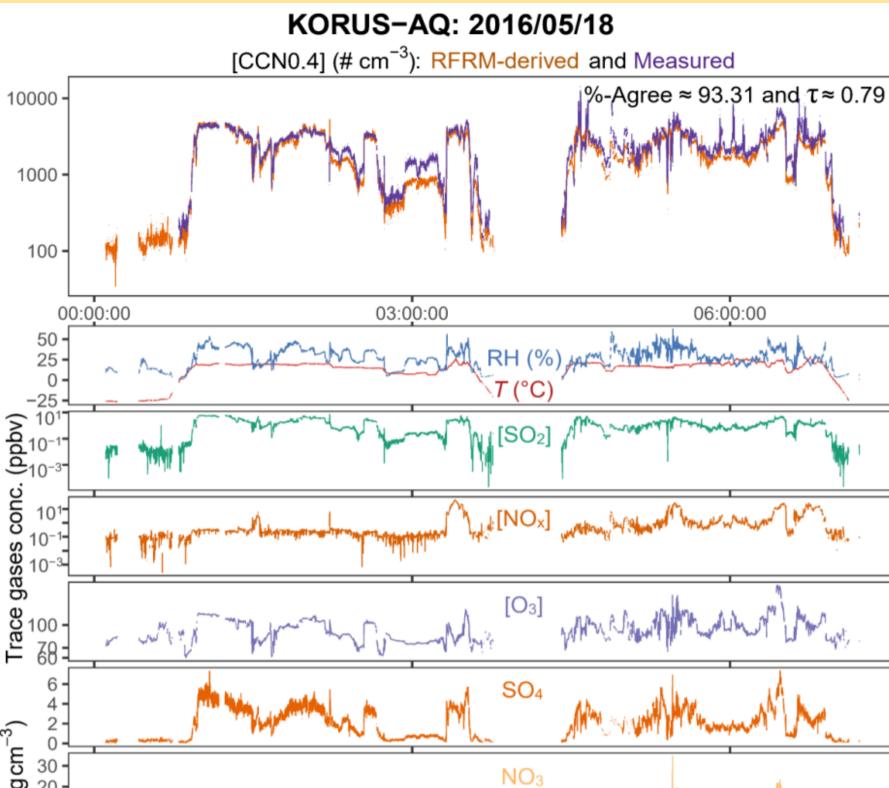
Fangqun Yu¹, Gan Luo¹, Arshad Arjunan Nair¹, Kostas Tsigaridis^{2,3}, and Susanne E. Bauer²

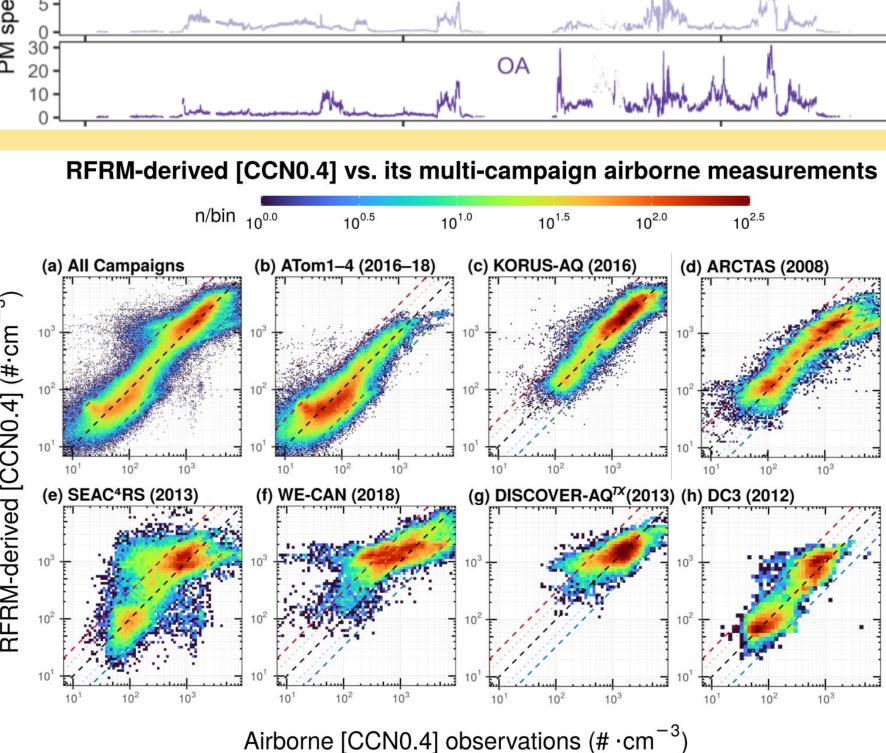
Atmospheric Sciences Research Center, State University of New York, Albany, NY, USA, ²NASA Goddard Institute for Space Studies, New York, NY, USA, ³Center for Climate Systems Research, New York, NY, USA

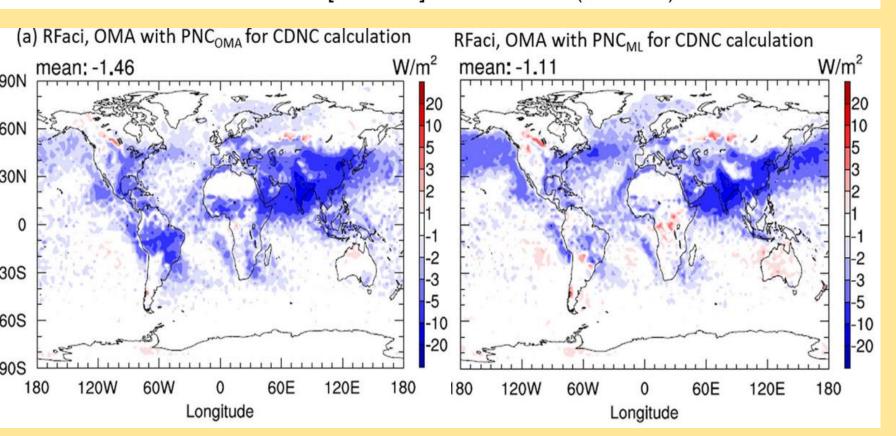
- Trained using GEOS-Chem-APM, the ML model adds only ~3.1% overhead to GEOS-Chem Classic
- Also implemented in GISS-ModelE2.1-OMA with PNC now agreeing better with measurements

→ Predictions







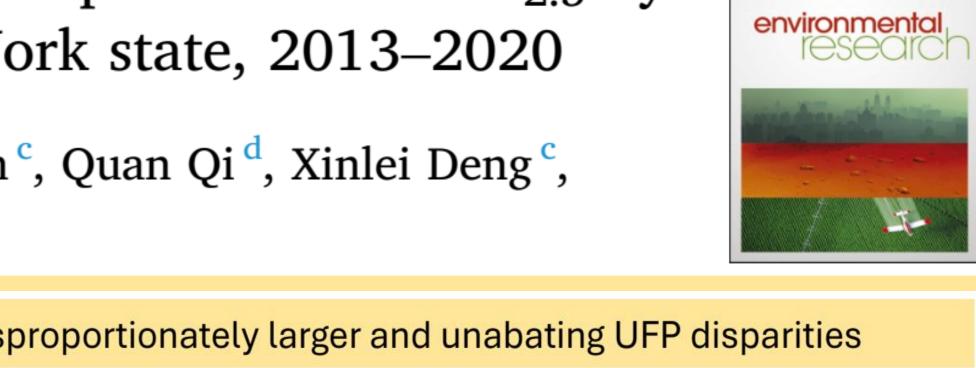


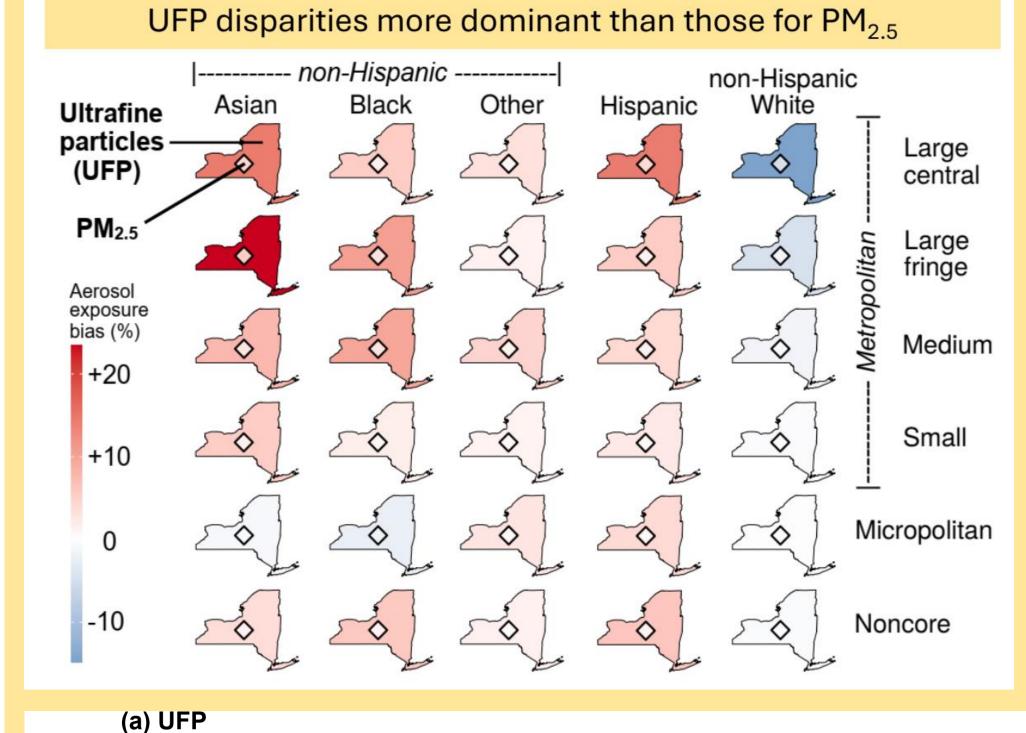
- RF_{aci} changes from −1.46 to −1.11 W·m⁻²; closer to median IPCC value and GISS-ModelE2.1-MATRIX
- Highlights need to account for the particle size changes from PI to PD in PNC and CDNC calculations

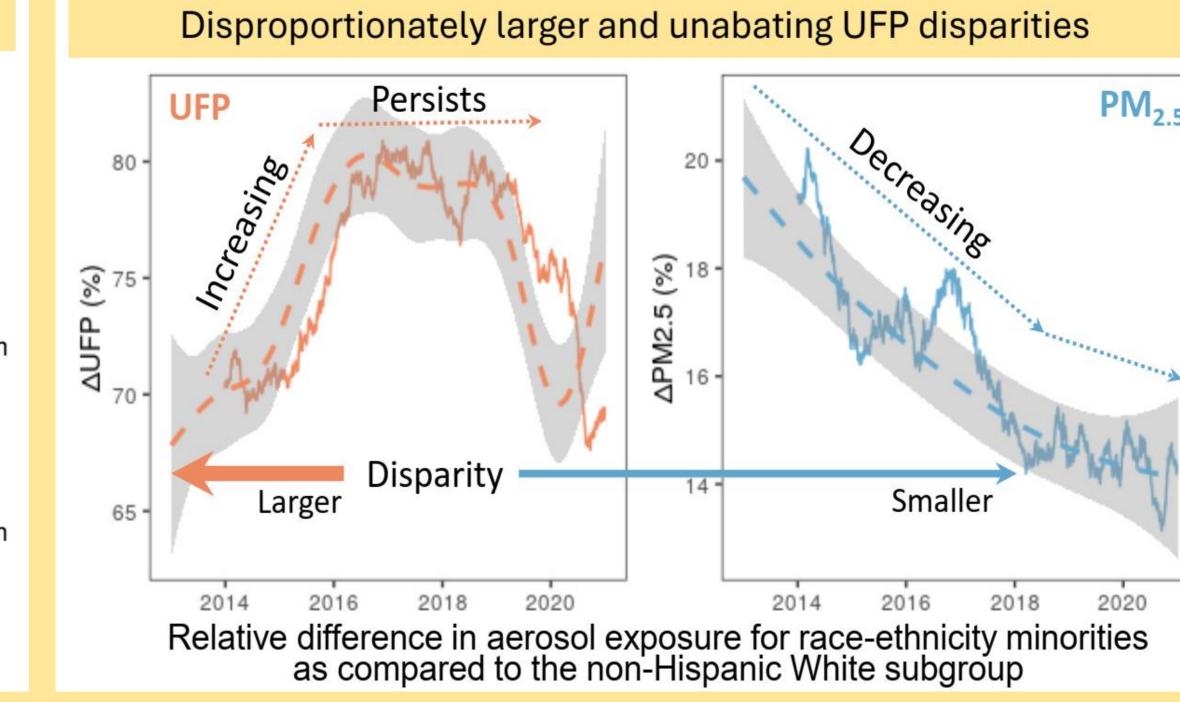
GE@S-Chem-APM for pollutant exposure & health impacts

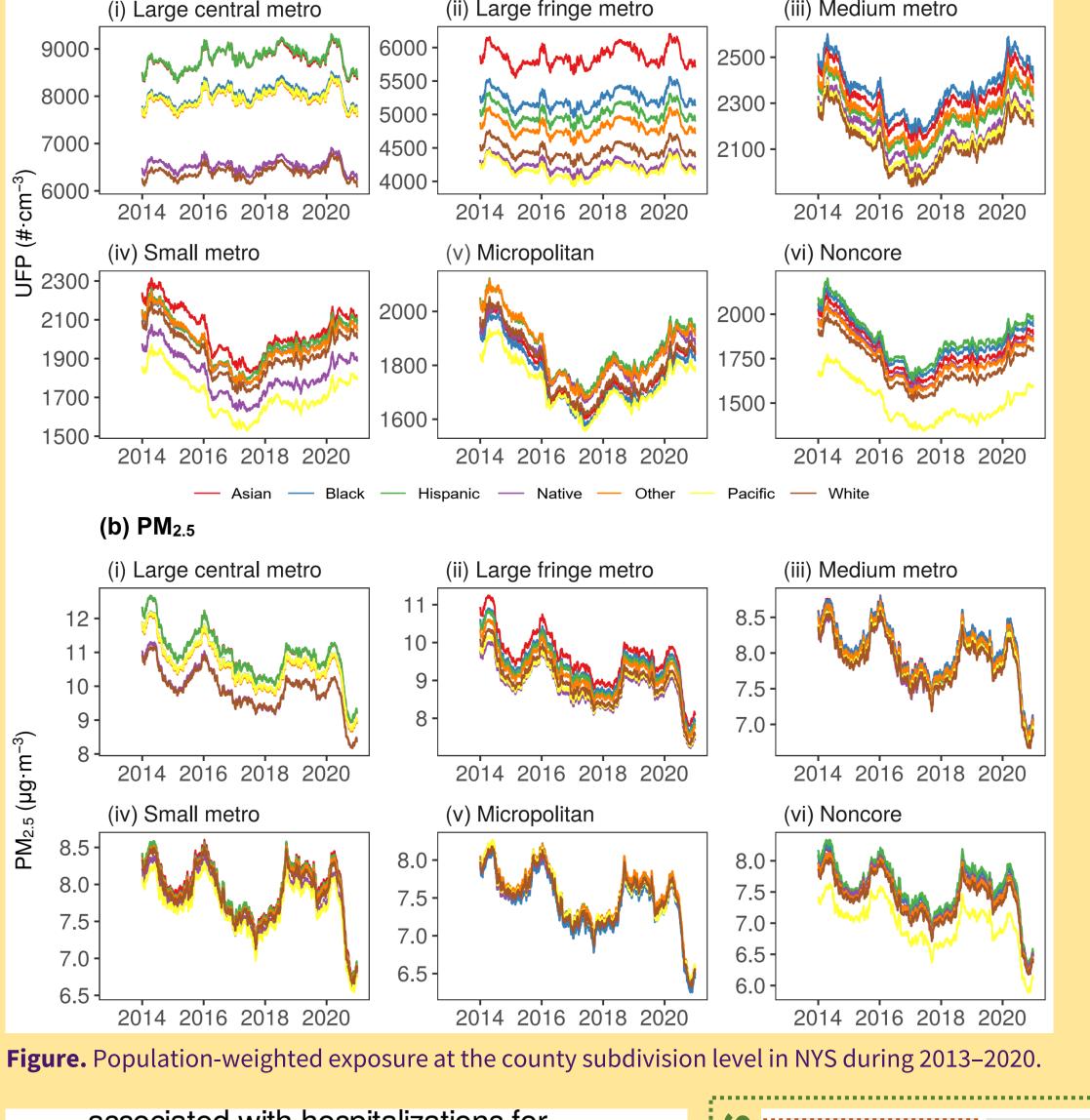
Environmental exposure disparities in ultrafine particles and $PM_{2.5}$ by urbanicity and socio-demographics in New York state, 2013–2020

Arshad Arjunan Nair^{a,*}, Shao Lin^{b,c}, Gan Luo^a, Ian Ryan^c, Quan Qi^d, Xinlei Deng^c, Fangqun Yu^{a,}

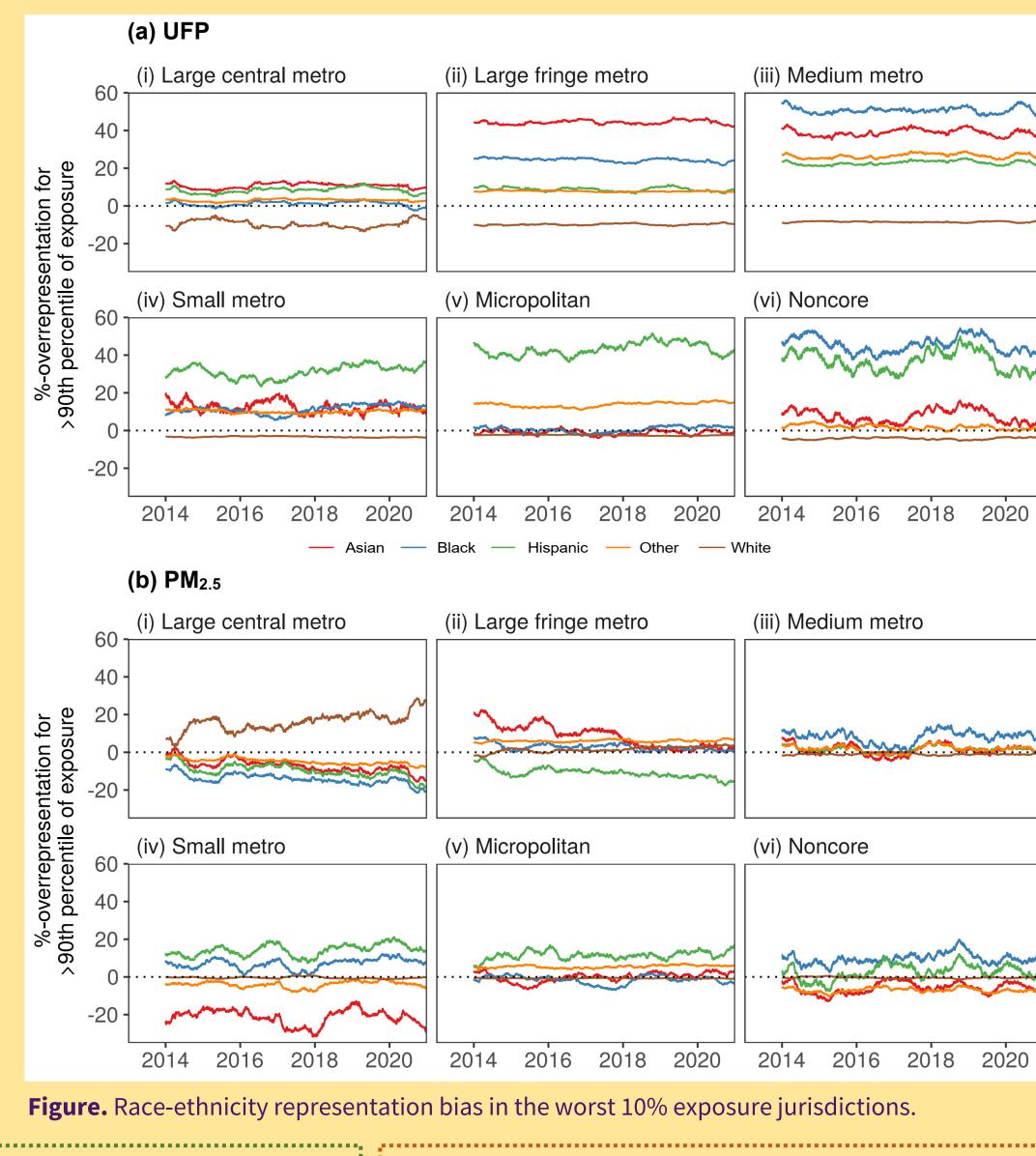






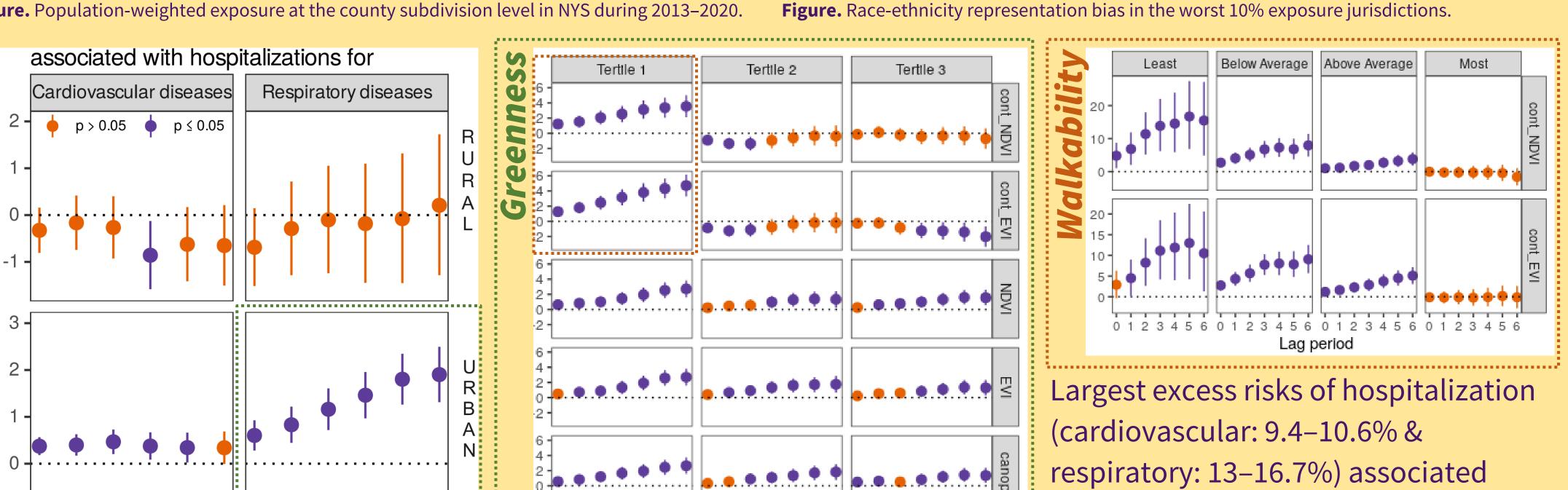


Multi-day lag period



with UFP exposure for least green and

least walkable jurisdictions



Multi-day lag period