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29 Abstract

30 While the human health impacts of larger particulate matter, such as PM10 and PM2.5, have been 

31 studied extensively, research regarding ultrafine particles (UFPs or PM0.1) and particle surface 

32 area is lacking. This case-crossover study assessed the associations between exposure to particle 

33 surface area concentration (PSC) and UFP particle number concentration (UFPnc) and hospital 

34 admissions for cardiovascular diseases (CVDs) in New York State (NYS), 2013-2018. We used 

35 a time-stratified case-crossover design to compare the PSC and UFPnc levels between 

36 hospitalization days and control days (similar days without admissions) for each CVD case. We 

37 utilized NYS hospital discharge data to identify all CVD cases who resided in NYS. We used 

38 UFP simulation data from GEOS-Chem, a state-of-the-art chemical transport model, to define 

39 PSC and UFPnc. Using a multi-pollutant model and conditional logistic regression, we assessed 

40 CVD risk per inter-quartile change of PSC and UFPnc after controlling for meteorological 

41 factors, co-pollutants, and time-varying variables. Our results indicate an immediate and robust 

42 positive association between PSC and overall CVDs (lag0– lag0-1: 1.0%) and a delayed, lasting 

43 effect between UFPnc and CVDs (lag0-3–lag0-6: 0.4%). Exposure to larger PSC was associated 

44 with immediate increases in stroke, hypertension, and ischemic heart diseases (0.7%, 0.8%, 

45 0.8%, respectively). The adverse effects of PSC on CVDs were highest among youngest children 

46 (0-4 years old), in fall and winter, and during cold temperature days (2.0%, 1.4%, 1.3%, 1.5%, 

47 respectively) compared to those on other days. We found an immediate, positive effect of PSC 

48 on overall CVDs and a delayed, lasting impact of UFPnc. PSC was a more sensitive indicator 

49 than UFPnc. The PSC-related effects were higher among certain CVD subtypes, in the youngest 

50 children, in certain seasons, and during cold days. Further studies are needed to validate our 

51 findings and evaluate the long-term effects.

52

53 Keywords: ultrafine particles, particle surface area, air pollution exposure, cardiovascular 
54 admission, lag effect, vulnerable population, seasonality
55
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56 Introduction

57 While relatively large particulate matter, such as PM10 (those smaller than 10 µm) and 

58 PM2.5 (those smaller than 2.5 µm), have been associated with adverse health outcomes in many 

59 prior studies (Schraufnagel 2020; Li et al. 2017), few know that ultrafine particles (UFPs) may 

60 threaten human health even more than larger particles. Classically, PM has been classified by 

61 size, an important factor in determining its health impacts. Airborne particulates smaller than 100 

62 nm or ≤0.1 μm in diameter are called UFPs or PM0.1 (these two terms are used interchangeably in 

63 this paper). Sources of UFPs include engine combustion, products of cooking, indoor heating and 

64 wood burning, new particle formation and growth, and more recently, products generated 

65 through nanotechnology. Studies have shown that exposure to ambient UFPs has detrimental 

66 effects on respiratory and cardiovascular systems (Schraufnagel 2020). Compared to larger 

67 particles, UFPs are of a more public health concern due to their 1) uniquely small size, which 

68 allows them to move into the lung interstitium and periphery easily, 2) large surface area to mass 

69 ratio, allowing them to attach to trace metals/chemicals, and 3) ability to penetrate the alveoli 

70 and translocate to other organs via systemic circulation quickly (Schraufnagel 2020; Chen et al. 

71 2020; HEI 2013).

72 There is mounting evidence from prior studies that show the adverse health effects of 

73 PM2.5 on cardiovascular diseases (CVDs). However, fewer studies have examined the CVD 

74 effects of UFPs (Schraufnagel 2020; Brook et al. 2010; Du et al. 2016). In addition, among the 

75 few UFP studies, UFP number concentration (UFPnc) was found to be associated with multiple 

76 CVDs, such as ischemic heart diseases (IHDs), stroke, hypertension, myocardial infarction (MI), 

77 and heart failure, but not found in PM2.5 or PM10
 (Li et al. 2017; Chen et al. 2020; Andersen et al. 

78 2010; Downward et al. 2018). However, despite the rapid growth of published studies on UFPs 

79 over the past decade, the evidence regarding the associations between UFP exposure and 

80 cardiovascular effects remains inconclusive due to the paucity of epidemiologic studies in this 

81 area exposure misclassification, and lack of standard metrics.

82 Most previous studies assessed the effect of UFPs on respiratory diseases rather than on 

83 CVD, although CVD is the leading cause of death in the US, leading to 659,000 deaths (1 in 4) 

84 each year (CDC 2018). In addition, heart disease costs the US approximately $363 billion per 

85 year (Aparicio et al. 2021), and CVD is the top primary cause for hospital admissions in New 

86 York State (NYS). In addition, there are currently no regular UFP monitoring sites in the US or 
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87 other countries. As a result, almost all published papers in this area used UFP measurement data 

88 from one or very few monitoring sites, usually located in urban areas. Since UFPs have high 

89 spatial variability, the limited number of special monitoring sites introduces significant exposure 

90 misclassification problems and limited generalizability for studies utilizing them.

91 Furthermore, fine particle metrics other than particle number concentration have been 

92 rarely used to assess their health effects in prior research. For instance, Chen et al. (2020) found 

93 that particle surface area concentration (PSC) was associated with a higher risk of MI than 

94 UFPnc, and PSC may be a more sensitive and biologically relevant metric. Finally, previous 

95 studies have not considered the interaction of meteorological and seasonal factors with UFPs on 

96 CVD, although these factors are considered important effect modifiers (Sioutas et al. 2005).

97 This study helps fill the knowledge gaps described above by assessing the association 

98 between PSC and UFPnc on hospital admissions for overall CVDs and several major CVD 

99 subtypes in NYS using simulated data generated by the innovative GEOS-Chem-model (17 * 17 

100 miles grids). We also estimated the effects of PSC on CVD across lag days, socio-demographics, 

101 seasons, and meteorological factors.

102

103 Method

104 Study design and health outcomes

105 We used a time-stratified case-crossover design where days of admission are defined as 

106 case days while identical weekdays in the same calendar month are defined as control days (Zhang 

107 et al. 2018; Rich et al. 2019). Since each case is compared with him/herself on control days, all 

108 personal confounders such as gender, age, family history of heart disease, and genetic variations 

109 are automatically controlled.

110 We obtained CVD-related hospital admissions data from the New York Statewide Planning 

111 and Research Cooperative System (SPARCS), a legislatively mandated database covering over 

112 95% of hospital records in NYS (Zhang et al. 2018). We defined CVDs using principal diagnosis, 

113 the International Classification of Diseases (ICD) 9: 390-459, and ICD-10: I00-I99. In addition, 

114 we included the following major CVD subtypes for stratified analysis: 1) cerebrovascular diseases 

115 (ICD-9: 430-438, ICD-10: I60-I69), 2) hypertensive diseases (ICD-9: 401-405, ICD-10: I10-I16), 

116 3) IHDs (ICD-9: 410-414 and ICD-10: I20-I25), 4) acute rheumatic fevers (ICD-9: 390-392 and 

117 ICD-10: I00-I02), 5) chronic rheumatic heart diseases (ICD-9: 393-398 and ICD-10: I05-I09), and 
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118 6) diseases of pulmonary circulation (ICD-9: 415-417 and ICD-10: I26-I28). All hospital 

119 admissions were geocoded to the street level and assigned to one of the GEOS-Chem simulation 

120 grids to be matched with the exposure variables.

121

122 PSC and UFP Simulation Model and Data

123 Due to the absence of a statewide network of PSC and UFP monitors, this study relied on 

124 particle size distribution simulations generated by GEOS-Chem-APM, a state-of-the-art global 

125 chemical transport model equipped with a size-resolved advanced particle microphysics (APM) 

126 module (Yu and Luo 2009). The GEOS-Chem model is a global 3-D model of atmospheric 

127 composition (Bey et al. 2001) and is continuously being improved (Luo et al. 2020; Holmes et al. 

128 2019; Keller et al. 2014; Murray et al. 2012; Pye and Seinfeld 2010; Evans and Jacob 2005; 

129 Martin et al. 2003). The APM model has the following relevant features to accurately simulate 

130 particle size distributions: (1) 40 bins to represent secondary particles with high size resolution 

131 for the size range important for the growth of nucleated particles to CCN sizes (Yu and Luo 

132 2009); (2) a state-of-the-art Ternary Ion mediated Nucleation (TIMN) mechanism (Yu et al. 

133 2018) and temperature-dependent organics-mediated nucleation (Yu et al. 2017); (3) explicit 

134 kinetic condensation of both H2SO4 and low volatile organic gases onto particles (Yu 2011); and 

135 (4) explicit resolution of the coating of secondary species on primary particles. GEOS-Chem-

136 APM has been used in several studies, and modeling results have been evaluated against a large 

137 set of land-, ship-, aircraft-, and satellite-based measurements (Yu and Luo 2009; Yu et al. 2017; 

138 Yu 2011; Yu et al. 2010; Yu et al. 2012; Yu et al. 2015; Yu et al. 2016; Yu et al. 2018; Luo and 

139 Yu 2011; Ma et al. 2012; Ma et al. 2014; Williamson et al. 2019).

140 In the present study, we ran GEOS-Chem-APM over a nested domain in the northeastern 

141 US with a 0.3125o × 0.25o horizontal resolution. PSC and UFPnc were calculated based on 

142 simulated particle size distribution (see Fig. 1 in Results for an example).

143

144 Statistical analysis

145 We used conditional logistic regression to evaluate the association between the rate of 

146 overall cardiovascular diseases with the PSC and UFPnc. Specifically, we regressed the case 

147 day/control day status against these two indicators while controlling for ambient temperature, 

148 relative humidity, PM25, O3, NH3, and time-varying variables, including holidays, season, and 
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149 long-time trend. Other air pollutants, such as NO2 or SO2, were not controlled in the model because 

150 they are highly correlated with UFPs (correlation coefficients >75%). We also conducted several 

151 stratified analyses for PSC by disease subtype, lags (0-6 days individually and cumulatively), 

152 season, and multiple sociodemographic characteristics, including age, ethnicity, and race. The 

153 excess risk (ER%) per each interquartile range (IQR) increase was calculated as (exp(beta*IQR)- 

154 1)*100%, where beta was the regression coefficient. All analysis was conducted using R 4.0.3.

155

156 Results

157 Particles in the atmosphere have different sizes, and particles in different sizes are 

158 dominated by different particle numbers, surface areas, and mass concentrations. The size 

159 distributions of particles in NYS are explicitly simulated using the GEOS-Chem-APM model 

160 described earlier. Figure 1 gives an example of normalized particle number, surface area, and mass 

161 size distributions at Queen College in New York City. Figure 1. describes the fractions of number, 

162 surface area, and mass in the different size ranges of particles (<0.01, 0.01-0.1, 0.1-0.5, 0.5-2.5, 

163 and 2.5-10 µm). UFPs (<0.1 µm) account for 87% of particle number concentration, 21% of PSC, 

164 and 6% of particle mass concentrations.

165 The associations between each IQR increase in PSC or UFPnc, and the ER for overall 

166 CVDs by cumulative and individual lag days are presented in Table 1. Overall, we found that the 

167 corresponding risks of PSC and UFPnc on overall CVDs were higher on cumulative lag days. 

168 For example, the immediate highest risk occurred for surface area on lag 0-1 (ER = 1.0%, 95% 

169 confidence interval (95% CI) = 0.7%, 1.3%) (Table 1). For UFPnc, on the other hand, the 

170 delayed highest risks were observed from lag 0-3 days to lag 0-6 days (ERs range = 0.3%-0.4%). 

171 For individual lags, the higher risks for PSC were found on lag 0-1 days, but the highest ER of 

172 UFPnc was observed on 2 days later (ER = 0.3%, 95% CI = 0.2%, 0.5%).

173 We compared six CVD subtypes in relations to PSC and UFPnc, which were significantly 

174 associated with cerebrovascular (stroke), hypertensive disease, and IHDs, but not with acute 

175 rheumatic fever, chronic rheumatic heart disease, and disease of pulmonary circulation on 

176 individual lag days (Table 2). In general, surface area was immediately associated with elevated 

177 risk of stroke (ER on lag 0 = 0.7%, 95% CI = 0.1%, 1.3%), hypertensive diseases (ERs range = 

178 0.5%-0.8% for lag 0, 1, and 4 days), and IHDs (ER on lag 0 = 0.8%, 95% CI = 0.2%, 1.4%). In 

179 addition, UFPnc was statistically associated with elevated and lasting risks of hypertensive 
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180 diseases (ER on lag 2 = 0.5%, 95% CI = 0.2%, 0.8%) and IHDs (ER range = 0.4%-0.5% for lag 

181 0, 1, 2, and 3 days).

182 In Figure 2, the ERs associated with each IQR increase in surface area (PSC) with the 

183 CVDs by socio-demographical characteristics on lag 0 days (the strongest lag association) were 

184 described. Generally, the associations of PSC and CVDs among different demographical groups 

185 were not statistically significant (P for interaction >0.05). However, we did observe that older 

186 adults (aged >=65) were more susceptible to higher levels of PSC (ER = 1.1%, 95% CI = 0.8%, 

187 1.3%). Interestingly, we found that very young children (<5 years) were at the highest risk (ER = 

188 2.0%, 95% CI = 0.4%, 3.7%). Compared to their counterparts, males (ER = 1.1%, 95% CI = 

189 0.8%, 1.4%), non-black individuals (ER = 1.2%, 95% CI = 0.9%, 1.4%), and non-Hispanic 

190 individuals, (ER = 1.1%, 95% CI = 0.9%, 1.4%) had higher risks.

191 Table 3 shows the ERs of PSC-CVD associations for different seasons per IQR increase 

192 in exposure. The interaction effects were statistically significant for lag 0, 1, 3, and 6 days (P for 

193 interaction <0.05). Statistically significant elevated ERs were observed for all seasons on lag 0 

194 day. However, fall (ER of fall on lag 0 = 1.4%, 95% CI = 1.0%, 1.9%, and on lag 1 = 0.9%, 95% 

195 CI = 0.5%, 1.3%), and winter (ER of winter on lag 0 = 1.3%, 95% CI = 1.0%, 1.7%, and on lag 1 

196 = 1.0%, 95% CI = 0.7%, 1.4%) had significant higher risks compared to spring and summer .

197 The interaction effects between temperature or relative humidity and PSC on CVDs  were 

198 presented in Table 4. The interaction effects were constantly significant for temperature and 

199 relative humidity for most lag days (P for interaction <0.05). Compared with temperature >90th, 

200 we found that surface area had a higher risk on CVDs when the temperature was <90th (ER range 

201 = 0.2%-1.5%). Similarly, the CVD risks of PSC were higher when the relative humidity was 

202 <90th (ER range = 0.3%-0.6%).

203

204 Discussion

205 Effects of PSC or UFPnc on CVDs by lag days 

206 Our study found an immediate and strongest positive association between PSC and 

207 overall CVDs on the day of exposure and one day after. We also found a delayed adverse effect 

208 of UFP on CVD, which lasted for a week after exposure (0-3 lag days – 0-6 days). Consistent 

209 with our findings, a previous study conducted by Brook et al. (2010) stated that exposure to UFP 

210 for a few hours to weeks could trigger CVD–related morbidity and mortality in an updated 
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211 Scientific Statement from the American Heart Association (AHA). The AHA workgroup 

212 indicated that overall evidence supports a causal relationship between UFP exposure and CVD 

213 morbidity and mortality (Brook et al. 2010). In addition, Abroms et al. (2017) reported that 

214 exposure to ambient fine particulate matter increased emergency department visits for multiple 

215 cardiorespiratory outcomes during 0-2 lag days after exposure in Georgia, US. Chen et al. (2020) 

216 found that exposure to UFPs (size ranged from 10–100 nm), PSC, and particle length 

217 concentration were associated with increased risks of nonfatal MI in the first 6–12 h in 

218 Augsburg, Germany during 2005– 2015. In addition, PM0.1 exposure was associated with an 

219 increased incidence of heart failure, acute MI, ischemic and thrombotic stroke, increased blood 

220 pressure, and worse microvascular even after controlling for PM2.5 and NO2 (Andersen et al. 

221 2010). However, similar effects were not found for exposure to PM2.5 and PM10 (Pieters et al. 

222 2015; Olsen et al. 2014).

223 Another interesting finding from this study is that cumulative lag days may be a more 

224 endpoint-sensitive indicator representing longer time or cumulative exposure. In contrast, 

225 individual lag days demonstrate the short-term or independent effect of each day’s exposure. Our 

226 findings may highlight the importance of using both single and cumulative lag days to 

227 demonstrate the short-/longer-term effects of UFP and identify the days with the highest effect 

228 for clinical facility (beds and care) preparation or public health preparedness. Unfortunately, no 

229 studies used both lag indicators to compare to our findings.

230 It is biologically plausible that exposure to UFP may trigger the onset of CVD in the 

231 short term, as demonstrated by multiple studies. The potential biological mechanisms include 

232 that UFP exposure may activate neural reflexes in the respiratory tract, provoke imbalance of the 

233 autonomic nervous system, and then initiate cardiac arrhythmias or MI (Brook et al. 2010). 

234 Several panel studies have also reported the associations between UFP and decreased heart rate 

235 variability within hours (Breitner et al. 2019; Rich et al. 2012) or even minutes (Petters et al. 

236 2015) of increased exposure. In addition, short-term exposure to UFPs may cause systemic 

237 oxidative stress and inflammation, leading to impaired vascular function and thrombosis (Brook 

238 et al. 2010). A panel study of cardiac patients in Rochester, New York, observed positive 

239 associations between UFP exposure in the previous 12 hours and increased levels of fibrinogen 

240 (Croft et al. 2017).

241
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242 Comparing particle surface area with UFP number concentration on CVD

243 Our study also found that PSC was a more sensitive indicator (with consistently higher 

244 excess CVD risks across all cumulative lag days) than UFPnc. Although UFPs accounted for 

245 87% of UFPnc and 21% of PSC in our study, the broad range of PSC for all particles may 

246 increase the sensitivity to identify the health risks than UFPnc in our study. Consistently, Chen et 

247 al. (2020) also found that the effects of PSC and particle length concentration (PLC) were 

248 stronger and more precise than the UFPnc and remained similar after adjustment for PM or 

249 gaseous pollutants. A prior study in Augsburg, also in line with our findings, found stronger 

250 positive associations of inflammatory biomarkers in the blood with PSC and PLC than for 

251 UFPnc (Rückerl et al. 2016). Additionally, Hennig et al. (2018) reported that UFPnc (50–500 nm) 

252 and lung-deposited PSC were positively associated with overall and cardiovascular mortality in 

253 Germany.

254 Several toxicological studies also suggested that PSC might be the most biologically 

255 relevant and effective dose metric for acute nanoparticle toxicology in the lung (Sager et al. 

256 2009; Schmid and Stoeger 2017). This may be explained because the particle surface is where 

257 components of UFP interact directly with bodily fluids and tissue (Schmid and Stoeger 2017). 

258 Greater PSC may increase the surface reactivity and thus the oxidative stress and pro-

259 inflammatory effects (Hussain et al. 2009). Furthermore, Henning et al. (2018) stated that PSC 

260 distributions could be directly linked to emission sources and thus may be used for planning 

261 potential public health interventions. In other words, compared to particle mass and number, PSC 

262 could be used as an alternative metric that constitutes an integrated marker of reactive particle 

263 surface and deposition efficiency, which likely serves as a better indicator of understanding the 

264 biological mechanisms by which the inhalation of particles leads to health outcomes.

265

266 PSC/UFPnc – CVD associations by CVD subtype groups and SES

267 Our study found that exposure to large PSC was associated with immediate adverse 

268 effects (same day of exposure and one day after) in hospital admissions due to stroke, 

269 hypertension, and IHD. UFP’s effect on IHD also occurred immediately but lasted three days 

270 after the exposure. In line with our findings, Abrams et al. (2017) reported that oxidative 

271 potential dithiothreitol exposure was associated with ED visits for multiple cardiorespiratory 

272 outcomes, including IHD, on the same day to two days after exposure in Atlanta, Georgia, US. In 
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273 addition, Karottki et al. (2015) found that outdoor UFPnc exposure was associated with adverse 

274 effects of microvascular function; and exposure to out-/in-door PM2.5 and bio-aerosols were 

275 associated with markers of inflammation and lung cell integrity. Furthermore, an in-home survey 

276 in near-highway and urban background neighborhoods in and near Boston (MA, USA) found 

277 that time activity adjusted annual average UFPnc exposures were associated with stroke, IHD, 

278 and hypertension after controlling for BMI (Li et al. 2017).

279 We did not find significant differences in the PSC-CVD associations by different strata of 

280 various sociodemographic (SES) variables. One interesting finding is that young children aged 0-

281 4 years old showed the highest CVD risk per each IQR change of PSC. We could not find any 

282 studies that evaluated the disparities of PSC-CVD associations by SES. Children are usually 

283 more vulnerable to the health effects of air pollution, and these effects may begin in utero and 

284 produce lifelong consequences (Schraufnagel et al. 2019). As CVD is quite rare among young 

285 children, the highest CVD risk we found among young children demands further investigation.

286

287 UFP-CVD associations by seasonality and temperature

288 We found a significant seasonal difference in PSC-CVD relationships, i.e., the adverse 

289 effects of PSC on CVDs were approximately two-fold in the fall and winter as those in the spring 

290 or summer season. Consistently, we also found that the PSC-CVD associations were stronger on 

291 the days with lower temperature and lower humidity than hot days with high humidity. Previous 

292 studies found that when cold weather or temperature increases, UFP and other gaseous pollutant 

293 emissions can increase, matching our findings (Mathis et al. 2005). Although UFPnc near busy 

294 roads may mainly depend on emissions patterns, the diurnal or seasonal temperature cycle can 

295 also strongly modify the UFPnc and their distributions (Kuhn et al. 2005; Charron and Harrison 

296 2003). Lower ambient temperatures favor the formation of higher numbers of the smallest 

297 particles (< 50 nm) and favor the higher rates of new particle formation and slower atmospheric 

298 dispersion, which explains why UFP numbers or PSC are usually higher in the winter than in the 

299 summer (Sioutas et al. 2005). Interestingly, Herner et al. (2006) stated that lower temperatures 

300 near the ground at night might contribute to the formation of stable atmospheric layers that trap 

301 primary pollutants near their emissions source; and this effect can thus dominate UFP 

302 concentrations in regions that are not heavily influenced by photochemistry (Herner et al. 2005). 

303 Therefore, UFP concentration, composition, and volatility exhibit significant seasonal variability 
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304 due to high spatial variability, indoor sources, variable infiltration of UFPs from various outside 

305 sources, and meteorologic conditions (Sioutas et al. 2005).

306

307 Potential mechanisms of UFP and PSC on CVD

308 There is sufficient reason to believe that the health effects of UFPs or PM0.1 are greater 

309 than with larger particles because they are present in larger numbers, have a greater combined 

310 surface area, and adsorb larger concentrations of toxic air pollutants (oxidant gases, organic 

311 compounds, transition metals) per unit mass (Sioutas et al. 2005). After entering the body 

312 through the lungs, UFPs quickly translocate to all organs. Due to their small size, UFPs have 

313 unique distribution characteristics in the respiratory tree and may alter cellular function in ways 

314 that circumvent normal signaling pathways (Li et al. 2016). Additionally, UFPs can penetrate 

315 intracellularly and potentially cause DNA damage.

316 Another potential mechanism by which UFPs cause adverse health outcomes is lung 

317 inflammation and its subsequent spread of inflammatory mediators to distal organs. UFPs may 

318 cause systemic inflammation, endothelial dysfunction, and coagulation changes through which 

319 individuals may further develop IHD or hypertension (Schraufnagel 2020). These findings were 

320 also supported by the elevated multiple biomarkers among these patients, including C-reactive 

321 protein (CRP), circulating polymorphonuclear leukocytes, platelets, fibrinogen, plasma viscosity, 

322 and other markers after UFP exposure. Fine particles also promote endothelial dysfunction, 

323 vascular inflammation, and atherosclerosis. Increasingly, literature reports that PM0.1 plays a 

324 major role in essentially all of these factors (Olsen et al. 2014; Hildebrandt et al. 2009). Most 

325 studies show a far greater effect for UFPs than larger particles. Furthermore, UFPs that enter 

326 alveoli can be retained in surfactant, thus sidestepping the mucociliary escalator clearance 

327 mechanisms (Möller et al. 2008). The retention half-lives of titanium dioxide particles in animal 

328 lungs are 170 days for 250-nm particles and 500 days for 20-nm particles, indicating that smaller 

329 particles cause more persistent inflammation than larger ones (Oberdorster et al. 1994).

330

331 Study strengths and limitations

332 To our knowledge, this is one of the few studies that have significantly improved UFP 

333 exposure assessment by using high-resolution air pollution simulation data generated by GEOS-

334 Chem, a previously validated, state-of-the-art chemical transport model. Compared to the 
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335 relatively limited number of EPA PM2.5 monitors in NYS, this study utilized 286 simulation 

336 points spread out evenly over NYS at a 17 x 17-mile resolution. This unique exposure 

337 assessment models for all ambient pollutants controlled for many environmental factors, 

338 including meteorological conditions, all major exposure sources (including traffic roads, power 

339 plants, residential, agriculture, biomass burning, biogenic, ships, aviation, and others), and 

340 chemical reactions occurring in the atmosphere. Contrast to most prior UFP studies that utilized 

341 one or a few PM monitors, our unique exposure assessment can be applied to larger areas, and 

342 significantly reduced exposure misclassification bias present in previous studies. In addition to 

343 UFPnc, we also evaluated the impacts of PSC on CVD, which helped us compare and identify 

344 the most sensitive exposure metrics. Furthermore, this may be the largest study evaluating the 

345 effects of UFPs and PSC on CVD in the US as we have evaluated approximately 2 million CVD 

346 hospital admission records overall and several major CVD subtypes in NYS, one of the largest 

347 states in the US. Another advantage is our use of objective SPARCS health data to reduce 

348 reporting bias, a common limitation encountered by studies based on survey data. Finally, we 

349 used a multi-pollutant model to control for all co-pollutants in the analyses, which is a major 

350 strength compared to many prior studies that used single pollutant models.

351 On the other hand, several potential limitations should be considered. The first concern is 

352 how accurate the high-resolution air pollution simulations are. While GEOS-Chem has been 

353 validated around the globe by several previous studies as described in a previous session (PSC 

354 and UFP Simulation Model and Data), detailed measurements in NYS are very limited and need 

355 further validation. To this end, we have performed sensitivity analysis by using the available 

356 UFP monitoring data in two small urban areas (Queens and Rochester sites) to link with the 

357 CVD hospitalization data in the same regions. We found a similar range of excess risks (0.3%-

358 0.7%) of overall CVD admissions and immediate effect per IQR increase of UFP in this 

359 sensitivity analysis as we originally found in our statewide study. We also found that cardiac 

360 arrhythmias, stroke, and IHD increased in the sensitivity analysis. However, the risks of stroke 

361 and IHD were not statistically significant due to the small sample sizes. Another limitation is that 

362 we only included CVD hospital admission cases, representing the most severe patients but 

363 missing the less severe cases. Therefore, the generalizability of this study may be limited. 

364 However, stroke, IHD, and most cardiovascular diseases require immediate and urgent medical 

365 attention. Therefore, it may be appropriate to use emergency department visits for these health 
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366 outcomes. In addition, our result that the youngest group (0-4 years old) showed the highest 

367 CVD risk associated with PSC is very interesting because CVDs are usually higher among adults 

368 or seniors. We evaluated the CVD subtypes among young children and found that the most 

369 common CVDs among 0-4 years old children are polyarteritis nodosa, followed by arrhythmia, 

370 congestive heart failure, and chronic pulmonary heart disease. These uncommon CVDs 

371 occurring in young children deserve further research. Finally, confounding effects are an 

372 important concern. Nevertheless, the case-crossover design has automatically controlled some 

373 inherited factors, such as age, gender, race, ethnicity, family history of CVD or other diseases, 

374 and lifestyle choices (smoking or alcohol drinking). We also controlled for all possible co-

375 pollutants (which have correlation coefficients <0.70 with UFPs), temperature, relative humidity, 

376 and time-varying variables (weekday or weekend, holidays, season, long-term trend) in the 

377 model. However, we could not adjust for some residual confounders, such as activity patterns 

378 and indoor UFP exposure.

379 This study provides a useful tool for environmental scientists or epidemiologists to 

380 predict UFPnc and PSC at a much finer resolution throughout NYS than ever before. As there 

381 are currently very few UFP monitors statewide and no UFP monitor sites in rural areas, our 

382 GEOS-Chem model would significantly improve the current exposure assessment in UFP and 

383 other criteria pollutants. Our study also compared two particle metrics and their relationship with 

384 CVDs, contributing to new scientific knowledge. Furthermore, physicians and public health 

385 agencies should be aware of the transient and lasting effects of UFPs on CVDs, which could be 

386 used to prevent and intervene in those severe cases.

387

388 Conclusion

389 Our study found an immediate and strong positive association between PSC and overall 

390 CVDs, but a delayed, lasting effect of UFPnc on CVD. PSC was a more sensitive indicator than 

391 UFPnc. Exposure to large PSC was associated with an immediately increased risk of hospital 

392 admissions for a stroke, hypertension, and IHD. The adverse effects of PSC on CVDs were 

393 highest among youngest children (0-4 years old), fall and winter seasons, and during cold 

394 temperature days. Further studies are needed to validate our findings and evaluate the long-term 

395 effects of PSC and UFPs on CVDs and other health outcomes.

396
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409
410 Figure 1. 2013-2018 mean normalized particle size distributions (PSD) in term of number (N, in 
411 #/cm3), surface area (S, in µm2/cm3), and mass (M, in µg/m3) concentrations in an urban site 
412 (Queen College, New York City). The total N, S, and M are 9665 #/cm3, 154 µm2/cm3, and 8.2 
413 µg/m3, respectively. The fractions of N, S, and M in the different size ranges (<0.01, 0.01-0.1, 
414 0.1-0.5, 0.5-2.5, and 2.5-10 µm) are given in the inserted table. UFPs (<0.1 µm) account for 87% 
415 of particle number concentration, 21% of particle surface area, and 6% of particle mass 
416 concentrations. 
417

418
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419 Table 1. Association between each IQR increase in particle surface area or number concentrations of 
420 ultrafine particles and the excess risk (%) for hospital admissions due to cardiovascular diseases.
421

Cumulative lags Individual lagsCase(N)

Lag IQR Excess Risk (%) Lag IQR Excess Risk (%)

1,769,972 0 207.7 1.0 (0.8, 1.2) 0 207.7 1.0 (0.8, 1.2)

1,769,049 0-1 188.8 1.0 (0.7, 1.3) 1 207.6 0.5 (0.3, 0.8)

1,767,937 0-2 168.8 0.8 (0.5, 1.1) 2 207.6 0.0 (-0.2, 0.2)

1,766,771 0-3 154.6 0.6 (0.3, 0.9) 3 208.5 -0.1 (-0.4, 0.1)

1,765,579 0-4 146.2 0.5 (0.2, 0.8) 4 208.4 -0.0 (-0.3, 0.2)

1,764,665 0-5 139.4 0.4 (0.0, 0.7) 5 208.3 -0.3 (-0.5, -0.0)

Surface 
area

1,763,787 0-6 134 0.3 (0.0, 0.7) 6 208.2  0.0 (-0.2, 0.2)

1,769,972 0 1990 0.0 (-0.1, 0.1) 0 1990 0.0 (-0.1, 0.1)

1,769,049 0-1 1835 0.1 (-0.0, 0.3) 1 1990 0.2 (0.1, 0.3)

1,767,937 0-2 1706.7 0.3 (0.1, 0.5) 2 1990 0.3 (0.2, 0.5)

1,766,771 0-3 1621.8 0.4 (0.2, 0.6) 3 1990 0.2 (0.1, 0.4)

1,765,579 0-4 1561 0.4 (0.2, 0.6) 4 2000 0.1 (-0.1, 0.2)

1,764,665 0-5 1516.5 0.4 (0.2, 0.6) 5 2000 0.0 (-0.1, 0.2)

Ultrafine 

Particle

1,763,787 0-6 1480 0.4 (0.2, 0.7) 6 2000 0.0 (-0.1, 0.2)

422

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
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441 Table 2. Excess risk (%) associated with each IQR increase in particle surface area or number 
442 concentrations of ultrafine particles by subtypes of CVD admissions in NYS
443

Lag Cerebrovascular Hypertensive 
Disease

Ischemic heart 
Disease

Acute 
Rheumatic 
Fever

Chronic 
Rheumatic 
Heart Disease

Diseases of 
Pulmonary 
Circulation

Surface area
0 0.7 (0.1, 1.3) 0.8 (0.3, 1.3) 0.8 (0.2, 1.4) -14.2 (-25.9, -0.6) -0.5 (-6.7, 6.1) 0.8 (-0.6, 2.1)
1 0.4 (-0.2, 1.1) 0.7 (0.2, 1.2) 0.5 (-0.1, 1.1) -8.7 (-20.6, 5.1) 0.5 (-5.6, 6.9) 0.9 (-0.5, 2.3)
2 0.3 (-0.4, 0.9) 0.2 (-0.3, 0.7) -0.1 (-0.8, 0.5) 6.3 (-6.5, 21.0) 0.7 (-5.4, 7.3) -0.3 (-1.7, 1.1)
3 -0.5 (-1.1, 0.2) 0.1 (-0.4, 0.6) -0.4 (-1.0, 0.2) 2.0 (-10.9, 16.6) 0.0 (-6.2, 6.7) -0.4 (-1.8, 1.0)
4 -0.1 (-0.7, 0.6) 0.5 (0.1, 1.0) -0.7 (-1.3, -0.1) -3.1 (-15.4, 10.9) 3.7 (-2.8,10.5) -0.5 (-1.9, 0.9)
5 -0.5 (-1.1, 0.2) -0.0(-0.5, 0.5) -0.3 (-0.9, 0.3) 6.4 (-7.8, 22.8) 4.1 (-2.5,11.0) -0.3 (-1.6, 1.1)
6 -0.8 (-1.5, -0.2) 0.4 (-0.0, 0.9) 0.3 (-0.4, 0.9) 2.6 (-10.9, 18.2) -0.2 (-6.5, 6.5) 0.1 (-1.2, 1.5)

Ultrafine Particle
0 0.3 (-0.1, 0.7) -0.3 (-0.5, 0) 0.4 (0.0, 0.8) -4.6 (-12.4, 4.0) -1.2 (-4.9, 2.6) 0.0 (-0.8, 0.8)
1 0.3 (-0.0, 0.7) 0.1 (-0.2, 0.3) 0.4 (0.1, 0.8) -2.4 (-9.9, 5.8) -0.5 (-4.3, 3.5) 0.2 (-0.6, 1.0)
2 -0.0 (-0.4, 0.3) 0.5 (0.2, 0.8) 0.5 (0.1, 0.8) -5.0 (-12.4, 2.9) 1.9 (-2.1, 6.0) 1.5 (0.6, 2.3)
3 0.2 (-0.2, 0.6) 0.3 (-0.0, 0.6) 0.4 (0.0, 0.8) -2.6 (-10.2, 5.8) 0.2 (-3.6, 4.2) -0.4 (-1.2, 0.4)
4 0.3 (-0.1, 0.7) 0.1 (-0.2, 0.4) -0.1 (-0.4, 0.3) -1.9 (-10.0, 6.9) 3.0 (-0.8, 7.1) -1.4 (-2.2, -0.6)
5 0.0 (-0.4, 0.4) 0.0 (-0.3, 0.3) -0.3 (-0.7, 0.1) -5.5 (-13.2, 2.9) -2.0 (-5.9, 1.9) 0.3 (-0.5, 1.1)
6 0.3 (-0.1, 0.7) -0.1(-0.4, 0.2) -0.1 (-0.5, 0.3) -0.9 (-8.5, 7.4) 0.1 (-3.7, 4.0) -0.4 (-1.2, 0.4)

444

445
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446 Table 3. Excess risk (%) of overall cardiovascular admissions associated with each IQR increase in 
447 particle surface area by season, NYS
448

Excess risk (%)

Lag Case IQR Spring Summer Fall Winter

P value
 (seasonal 
difference)

0 1,769,972 207.7 0.8 (0.4, 1.1) 0.6 (0.2, 0.9) 1.4 (1.0, 1.9) 1.3 (1.0, 1.7) P<0.001
1 1,769,049 207.6 0.1 (-0.3, 0.5) 0.2 (-0.2, 0.6) 0.9 (0.5, 1.3) 1.0 (0.7, 1.4) P<0.001
2 1,767,937 207.6 -0.0 (-0.4, 0.4) 0.0 (-0.4, 0.4) 0.2 (-0.2, 0.6) -0.1 (-0.5, 0.3) 0.731
3 1,766,771 208.5 -0.1 (-0.5, 0.3) 0.1 (-0.3, 0.5) 0.3 (-0.1, 0.7) -0.6 (-1.0, -0.3) 0.003
4 1,765,579 208.4 -0.1 (-0.5, 0.3) -0.0 (-0.4, 0.4) 0.1 (-0.3, 0.5) -0.1 (-0.5, 0.3) 0.937
5 1,764,665 208.3 -0.5 (-0.9, -0.1) -0.1 (-0.5, 0.3) -0.0 (-0.4, 0.4) -0.4 (-0.8, -0.0) 0.235
6 1,763,787 208.2 -0.2 (-0.6, 0.2) 0.4 (-0.0, 0.8) 0.3 (-0.1, 0.7) -0.4 (-0.7, 0.0) 0.015

449
450
451
452
453
454
455
456
457
458
459
460
461
462

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4086557

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



463 Table 4. Excess risk (%) of cardiovascular admissions associated with each IQR increase in particle 
464 surface area by temperature and relative humidity (RH)
465

Lag IQR
(total)

Case
(total)

Temp<90th Temp>90th RH<90th RH>90th

0 207.7 1,769,972 1.5 (1.3, 1.8)* 0.3 (0.0, 0.6) 0.6 (0.4, 0.8)* 0.2 (-0.1, 0.5)
1 207.6 1,769,049 0.8 (0.6, 1.1)* 0.1 (-0.2, 0.4) 0.6 (0.4, 0.8) 0.3 (0.1, 0.6)
2 207.6 1,767,937 0.2 (0.0, 0.5)* -0.4 (-0.7, -0.1) 0.3 (0.1, 0.5)* -0.3 (-0.5, -0.0)
3 208.5 1,766,771 0.1 (-0.2, 0.3)* -0.6 (-0.9, -0.3) -0.0 (-0.2, 0.2)* -0.3 (-0.6, -0.1)
4 208.4 1,765,579 0.1 (-0.2, 0.3)* -0.4 (-0.7, -0.1) 0.0 (-0.2, 0.2)* -0.3 (-0.6, -0.1)
5 208.3 1,764,665 -0.1 (-0.3, 0.1)* -0.8 (-1.1, -0.5) -0.1 (-0.3, 0.1)* -0.4 (-0.7, -0.2)
6 208.2 1,763,787 -0.1 (-0.3, 0.2) -0.2 (-0.5, 0.1) 0.1 (-0.1, 0.3) 0.2 (-0.1, 0.4)

466

467

468
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469

470

471
472 Figure 2. Association of particle surface area with overall cardiovascular hospitalization by social 
473 demographical variables 

474

475

476

477
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