
Abstract  Cloud condensation nuclei (CCN) are mediators of aerosol-cloud interactions, which 
contribute to the largest uncertainty in climate change prediction. Here, we present a machine learning 
(ML)/artificial intelligence (AI) model that quantifies CCN from model-simulated aerosol composition, 
atmospheric trace gas, and meteorological variables. Comprehensive multi-campaign airborne 
measurements, covering varied physicochemical regimes in the troposphere, confirm the validity of 
and help probe the inner workings of this ML model: revealing for the first time that different ranges 
of atmospheric aerosol composition and mass correspond to distinct aerosol number size distributions. 
ML extracts this information, important for accurate quantification of CCN, additionally from both 
chemistry and meteorology. This can provide a physicochemically explainable, computationally efficient, 
robust ML pathway in global climate models that only resolve aerosol composition; potentially mitigating 
the uncertainty of effective radiative forcing due to aerosol-cloud interactions (ERFaci) and improving 
confidence in assessment of anthropogenic contributions and climate change projections.

Plain Language Summary  The largest uncertainties in climate change modeling are linked 
with cloud condensation nuclei (CCN). These tiny atmospheric particles modulate cloud formation and 
thus affect the Earth's energy budget. A machine learning/artificial intelligence model that accurately 
quantifies CCN can potentially reduce these uncertainties. Comprehensive multi-campaign aircraft 
measurements over varied atmospheric environments validate this model. Importantly, the inner 
workings of this model are teased out to reveal that its decisions are rooted in physical and chemical 
principles.
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Key Points:
•	 �Machine learning (ML) derived 

cloud condensation nuclei 
numbers in strong agreement with 
comprehensive multi-campaign 
aircraft observations

•	 �First demonstration that aerosol 
size information is contained in 
aerosol mass speciation, chemistry 
and meteorology, and is extractable 
by ML

•	 �A physicochemically explainable 
(xAI) and robust ML avenue to 
mitigate aerosol-cloud interaction 
uncertainties in climate models is 
realized
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1.  Introduction
Atmospheric aerosol effects, particularly on cloud radiative forcing, remain the largest source of uncer-
tainty (or model diversity) in climate change prediction (IPCC, 2013). Those aerosols capable of condens-
ing water droplets and forming clouds—cloud condensation nuclei (CCN)—contribute to this uncertainty. 
CCN interactions with water vapor thus impact cloud micro- and macrophysics, and consequently modu-
late cloud formation, its properties (size, number, and optical), and dynamics and precipitation (Ackerman 
et al., 2000; Albrecht, 1989; Ferek et al., 2000; Hansen et al., 1997; Liou & Ou, 1989; Pincus & Baker, 1994; 
Rosenfeld, 2000; Twomey, 1974, 1977; Twomey et al., 1984). These resultant effects consequently impact 
Earth's energy budget and influence climate and weather.

Obtaining agreement of CCN predictions with observations is crucial toward mitigating the uncertainty 
associated with aerosol-cloud interactions. Two factors play the largest role in determining CCN (at a given 
water supersaturation): aerosol particle number size distributions (PNSD) and aerosol chemical composi-
tion (speciation; Fitzgerald, 1973; Junge & McLaren, 1971). While the debate continues (Crosbie et al., 2015; 
Dusek et al., 2006; Hudson, 2007; Twohy & Anderson, 2008) as to which factor plays a larger role, the more 
predominant effect is arguably that of PNSD due to the third order dependence on size for the solute effect 
that permits water vapor condensation as well as the greater variability of PNSD than that of speciation, 
except in polluted regions. However, most global climate models (GCMs) use simplified prescriptions to es-
timate aerosol numbers or CCN from speciation while assuming a fixed PNSD (Boucher & Lohmann, 1995; 
Menon et al., 2002; Menon & Rotstayn, 2006). This is due to current computational constraints, which limit 
the incorporation into GCMs of size-resolved microphysics models with a detailed treatment of processes 
pertinent to a more accurate representation of PNSD and hence CCN number concentrations.

Machine learning (ML) is a subset of artificial intelligence (AI) where computers are trained on a large 
number of scenarios to acquire knowledge by statistical learning and without explicit instructions. While 
ML has been in use for the last several decades (Dramsch, 2020; Reichstein et al., 2019), in recent years, nov-
el techniques and rapid advances in ML have led to its emergent applications in the atmospheric sciences 
(e.g., Grange et al., 2018; Jin et al., 2019; Nair & Yu, 2020; Su et al., 2020), especially in grappling with ordi-
nal, nonlinear, complex, and massive amounts of data. It is key, however, that these increasingly black-box 
ML/AI techniques remain grounded in reality for trustworthiness and generalizability.

We, therefore, set out to probe the inner workings of our recently proposed ML model (Nair & Yu, 2020) 
trained on a chemical transport model with detailed size-resolved microphysics for deriving CCN number 
concentrations, that is, why CCN can be predicted from aerosol speciation (and other commonly available 
atmospheric variables) without size information. Comprehensive multi-campaign airborne measurements 
over varied physicochemical regimes across the tropospheric extent are used to explore the key parameters 
determining [CCN].

2.  Methods
2.1.  Machine Learning Model

Random forest (Breiman, 2001) is a ML technique that can be used for regression analysis and understand-
ing the dependence of an outcome on other variables (its predictors). This is an ensemble (to reduce over-
fitting) of several decision trees (Breiman et al., 1984), each obtained on random subsets (Breiman, 1996) 
of the training data. For the generalizability of this ML model, it requires to be trained on a large number 
of scenarios, for which presently available measurements are scant (see Text S2). Here, the RFRM (Ran-
dom Forest Regression Model) is trained on 30 yr simulations by GEOS-Chem-APM: a state-of-the-science 
chemical transport model with detailed size-resolved microphysics (Yu & Luo, 2009). The present study 
uses the RFRM-ShortVars configuration (Nair & Yu, 2020), a fast implementation (Wright & Ziegler, 2017) 
of random forest models (Breiman, 2003) in the statistical computing language R (R Core Team, 2020). 
RFRM-ShortVars, which was developed to use 𝐴𝐴 PM2.5 (mass of Particulate Matter (PM) with particle diame-
ter 𝐴𝐴 ≤ 2.5 μm) speciation as predictors for number concentrations of CCN at 0.4% supersaturation ([CCN0.4]) 
is retrained to use airborne measurements of 𝐴𝐴 PM1 speciation (in lieu of 𝐴𝐴 PM2.5 speciation measurements). 
Henceforth referred to as RFRM, this model derives [CCN0.4] from the following 9 commonly measured 
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variables of atmospheric state and composition as input predictors: (Meteorology) temperature (T) and rela-
tive humidity (RH), (Gas-phase chemistry) 𝐴𝐴 SO2 , 𝐴𝐴 NO𝑥𝑥 , and 𝐴𝐴 O3 , and (Aerosol composition and mass) 𝐴𝐴 NH4 , 𝐴𝐴 SO4 , 

𝐴𝐴 NO3 , and 𝐴𝐴 OA (organic aerosol). The present analysis focuses on [CCN0.4] for the purpose of demonstration 
and in future work will be extensible for the full CCN spectrum.

2.2.  Multi-Campaign Airborne Measurements

Comprehensive (global scope, tropospheric vertical extent, varied seasons, and high temporal resolution) 
airborne measurements of atmospheric state and composition variables provide an unparalleled opportuni-
ty to probe the inner workings of the ML derivation of [CCN0.4] in varied atmospheric environments. Seven 
airborne campaigns were identified (Table S1) with simultaneous measurements of the 9 predictors as well 
as [CCN0.4] and with their spatial domain shown in Figure S1, instrumentation details in Table S2, and 
further details of [CCN0.4] measurements in Text S1. PNSD presented here are 𝐴𝐴 𝐴 1,000 nm, above which aer-
osol numbers sharply taper off and negligibly contribute to [CCN0.4]. For the ATom1–4 campaign, PNSD 
is measured using the aerosol microphysical properties (AMP) package (Brock, Williamson, et al., 2019) 
and for the other campaigns using a scanning mobility particle sizer (SMPS; and nano-SMPS for WE-CAN) 
and either an Ultra-High Sensitivity Aerosol Spectrometer (UHSAS: ARCTAS, DISCOVER-AQTX, and WE-
CAN) or a Laser Aerosol Spectrometer (LAS: DC3, KORUS-AQ, and SEAC4RS). To increase data coverage, if 
a measurement was missing and if there were measurements one second prior and/or after, it was imputed 
with their mean value. For DC3 [𝐴𝐴 SO2 ] (0.1 Hz) and WE-CAN HR-ToF-AMS (0.2 Hz), measurements were 
assumed constant for 10 and 5 s, respectively.

2.3.  Statistical Estimators to Quantify RFRM Performance

In the present study, we use the following statistical estimators for model-observation comparison: Kendall 
rank correlation coefficient (𝐴𝐴 𝐴𝐴𝐾𝐾 ) to quantify correlation and %-Good to quantify agreement. The rationale 
and advantages of using these statistical metrics to evaluate model-observation comparisons are described 
in detail elsewhere (Nair et al., 2019). These estimators are defined as follows:
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where 𝐴𝐴 𝐴𝐴 is the sample size, 𝐴𝐴 𝐴𝐴 is the value, 𝐴𝐴 𝐴𝐴 is the number of tied ranks in the 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡 group of tied ranks, and 
superscripts o and m denote observed and modeled values, respectively:
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%-Good is defined on the basis of the Fractional Bias (FB). It is the percentage of RFRM-derived [CCN0.4] 
with FB in the range 𝐴𝐴 [−0.6,+0.6] with respect to measured [CCN0.4]. Correspondingly, %-Over: 𝐴𝐴 FB > +0.6 
and %-Under: 𝐴𝐴 FB < −0.6 .

3.  Results
3.1.  Machine Learning Successfully Derives CCN Number Concentrations

We compare three approaches: (a) LinReg: linear regression on the airborne measurements of aerosol speci-
ation for [CCN0.4] as an effective representation for current aerosol mass to number prescriptions in GCMs, 
(b) RFRM-PM: a Random Forest Regression Model, trained on a global model of atmospheric chemical 
composition with size-resolved microphysics (GEOS-Chem-APM), for [CCN0.4] on aerosol speciation (𝐴𝐴 PM1 

𝐴𝐴 NH4 , 𝐴𝐴 SO4 , 𝐴𝐴 NO3 , and 𝐴𝐴 OA (organic aerosol)) as a possible improvement on LinReg, and (c) RFRM: a specific 
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Random Forest Regression Model, trained on GEOS-Chem-APM, for [CCN0.4] on aerosol speciation and 
additional variables of (Gas-phase chemistry) [𝐴𝐴 SO2 ], [𝐴𝐴 NO𝑥𝑥 ], and [𝐴𝐴 O3 ], and (Meteorology) temperature (T) and 
relative humidity (RH).

Illustrated in Figure 1 is the comparison for each of these methods with aggregated airborne campaign 
measurements (for individual campaign comparisons see Figures S5–S7) demonstrating improved ML skill 
from LinReg (Figure 1a) 𝐴𝐴 → RFRM-PM (Figure 1b) 𝐴𝐴 → RFRM (Figure 1c). Figure 1d provides the summary 
statistics quantifying model-observation degree of agreement and correlation. In comparison with airborne 
measurements of [CCN0.4], RFRM-derived values show strong agreement (%-Good, defined in Methods, of 

𝐴𝐴 ≈ 80% ) and high correlation (𝐴𝐴 𝐴𝐴𝐾𝐾 ≈ 0.76 ). The highest density is on or around the dotted white line indicat-
ing 1:1 model–observation agreement and the majority (green bars in Figure 1d) of the derived values are 
within the corridor of good-agreement between the dashed light red and dashed light blue lines. While the 
RFRM is overall robust, we examine the cases where it deviates from airborne measurements. When these 
model-observation disagreements (absolute FB 𝐴𝐴 (|FB|) > 1 ) do occur, they are rare (𝐴𝐴 5.9% ) and in a regime 
where their effect on cloud properties will be smallest (Martin et al., 1994; Ramanathan, 2001), that is, the 
sensitivity of cloud droplet numbers to changes in aerosol numbers is reduced at their high concentrations. 
For high (𝐴𝐴 𝐴 3𝐴𝐴 × 103 cm−3) measured [CCN0.4] RFRM low bias (𝐴𝐴 FB < −1 ) is largely associated with the wild-
fire plume measurements during the ARCTAS and WE-CAN campaigns. It must be noted here that the 
low likelihood of the RFRM being exposed to these scenarios of high [CCN0.4] and predictor values in its 
training (on the GEOS-Chem-APM global simulations) may contribute to this observed low bias. Ultimate-
ly, however, this scenario is infrequent: ARCTAS (8.7% of its measurements), WE-CAN (8.3%), SEAC4RS 
(2.7%), and other campaigns (𝐴𝐴 𝐴 0.5% ). The high bias (𝐴𝐴 FB > +1 ) of RFRM-derived [CCN0.4] occurs mainly 
during SEAC4RS (14%) and WE-CAN (7.1%). While the reason for this remains to be determined, there may 

Figure 1.  Comparison of machine learning derived versus airborne measurements of [CCN0.4]. Binned scatter plot for data at 1 Hz resolution from all 
campaigns. For (a) Linear Regression (LinReg), (b) RFRM-PM, and (c) RFRM. Central 99% range of the airborne-measured [CCN0.4] shown for a zoomed-in 
view. The lines, in the order of decreasing y-intercept, indicate fractional bias (FB) of (solid red) 𝐴𝐴 + 1 , (dashed light red) 𝐴𝐴 + 0.6 , (dotted white) 0 or 𝐴𝐴 1 ∶ 1 agreement, 
(dashed light blue) 𝐴𝐴 − 0.6 , and (solid blue) 𝐴𝐴 − 1 , respectively. Logscale colorbar shows the count per bin. Bin-width is 0.02 (arbitrary; corresponding to 𝐴𝐴 ± 2.3% ) on 
the logscale. (d) Summary statistics for the degree of model-observation agreement and correlation, as defined in the Methods, for each aircraft campaign.
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be measurement uncertainties; for instance, in Figure S4a, [CCN0.4] measured directly and inferred sepa-
rately are in large disagreement for 𝐴𝐴 SEAC4 RS during these instances of apparent RFRM-high-bias.

While the Random Forest Regression Models demonstrate a high degree of predictive performance over-
all, we examine their performance in higher detail, leveraging the high temporal resolution of airborne 
measurements, in Figure 2. For illustration, we select a day (June 10, 2016 from the KORUS-AQ campaign) 
with large variability in altitude (surface–8.5 km) as well as the 9 predictors. Shown is the time series of 
the measurements of these variables during this day: measured [CCN0.4] in black in Figure 2a and the 
9 simultaneously measured predictors (Figures 2b–2d) used as input predictors for the RFRMs to derive 
[CCN0.4]. RFRM-PM-derived (purple) and RFRM-derived (orange) [CCN0.4] are shown in Figure 2a. Even 
down to 1 Hz of resolution, RFRM is able to capture [CCN0.4] variations with high skill (%-Good𝐴𝐴 ≈ 92% and 

𝐴𝐴 𝐴𝐴𝐾𝐾 ≈ 0.73 ). During periods (1st, 3rd, and 6th hours) of aircraft ascent and descent and the corresponding 
large change in magnitude of [CCN0.4], the RFRM demonstrates its robustness in varying physicochemical 
environments. The consistency of the RFRM performance across the vertical extent of the troposphere is 
illustrated for each campaign in Figures S9 and S10. For WE-CAN (4–6 km) and ARCTAS (1–3 km), the 
earlier noted tendency of the RFRM to underpredict [CCN0.4] is seen in the splitting and skewing left of 
the violin distribution (Figures S9 and S10). Examining this in further detail, for observations with 𝐴𝐴 PM1 OA 

𝐴𝐴 𝐴 40 μg 𝐴𝐴 ⋅ m−3, mean fractional bias (MFB) for ARCTAS(WE-CAN) is 𝐴𝐴 − 1.3(−0.6) as compared to 𝐴𝐴 − 0.03(+0.2) 
when otherwise (𝐴𝐴 PM1 OA 𝐴𝐴 ≤ 40 μg𝐴𝐴 ⋅ m−3). This suggests that the RFRM-underestimation is due mostly to the 
high organic mass (likely in biomass burning plumes) not experienced by the RFRM during its training or 
the underestimation of the potential contribution of organic aerosol to CCN numbers in current models or 
a combination of these factors.

Figure 2.  Time series of [CCN0.4] and variables of atmospheric state and composition shown for a selected campaign 
day (KORUS-AQ: June 10, 2016). (a) [CCN0.4]: (black) Airborne-measurement, (purple) RFRM-PM-derived, and 
(orange) RFRM-derived; and (green) altitude. (b) Meteorology: (red) temperature (T) and (blue) relative humidity 
(RH). (c) Chemistry: (green) [𝐴𝐴 SO2 ], (orange) [𝐴𝐴 NO𝑥𝑥 ], and (blue) [𝐴𝐴 O3 ]. (d) 𝐴𝐴 PM1 speciated masses of (red) 𝐴𝐴 SO4 , (blue) 𝐴𝐴 NO3 , 
(orange) 𝐴𝐴 NH4 , and (green) 𝐴𝐴 OA . Data is shown at 1 Hz resolution. Solid lines associated with [CCN0.4] are 5 s rolling 
means.
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3.2.  Aerosol Mass Speciation Contains Size Distribution Information as Revealed by Machine 
Learning

In GCMs that do not resolve particle size distributions, proxies for aerosol numbers or cloud droplet num-
bers are obtained from aerosol mass speciation alone, assuming a fixed aerosol number size distribution. 
In this study, LinReg is an effective representation of the aerosol mass-to-number prescription in GCMs. 
This is due to linearly regressing for measured [CCN0.4] on all the measured aerosol speciation variables. 
Therefore, by virtue of overfitting, there can be no better aerosol mass-to-number prescription for the air-
borne measurements used in this study. Despite this, LinReg is demonstrated to be inadequate (Figure 1a). 
A potential improvement—RFRM-PM—employs one of the most accurate ML approaches for regression 
and appreciably (%-Good: 𝐴𝐴 38 → 68% ) improves the degree of agreement with CCN measurements. The im-
portance of considering 19 predictor variables of atmospheric state and composition (not limited to aerosol 
mass speciation) for accurate RFRM-derivation of [CCN0.4] has been demonstrated (Nair & Yu, 2020). Con-
sidering observational limitations, reduction to nine important predictors including T, RH, [𝐴𝐴 SO2 ], [𝐴𝐴 NO𝑥𝑥 ], 
and [𝐴𝐴 O3 ] is possible without significant deterioration of model performance. RFRM, which considers these 
variables in addition to only aerosol speciated mass, is in agreement with measured [CCN0.4] to a much 
greater degree (%-Good: 𝐴𝐴 38 → 68 → 80% ; Figures 1 and 2, and Figures S9 and S10). With the significant 
amount of measurement data that these airborne campaigns provide, we search for the reasons for why 
consideration of predictors beyond 𝐴𝐴 PM1 speciation helps improve the machine-learning model derivation 
of [CCN0.4].

The RFRM-PM performs better than LinReg for deriving [CCN0.4] when only the 𝐴𝐴 PM1 speciated masses 
are used as input (Figure 1). To examine the reason for this, Figure 3 shows how the 𝐴𝐴 PM1 mass contains 
information about the aerosol number size distribution (PNSD; P: particle/aerosol) that the random forest 
approach can leverage. The average normalized (to 𝐴𝐴 ≈ 60 nm (Williamson et al., 2019): the rough cut-off size 
for CCN0.4) airborne measured PNSD is shown in Figure 3. Figure 3a shows that for two different total 𝐴𝐴 PM1 
mass ranges the PNSD profile varies. While the linear regression implicitly assumes a fixed average PNSD 
(black curve), the RFRM derives [CCN0.4] using decisions in the subspace corresponding to the 𝐴𝐴 PM1 total 
mass, which defines more representative variations of PNSD. In addition, Figure 3b demonstrates that the 
aerosol composition (speciated mass fractions of aerosol mass) also carries PNSD information. The four 
panels correspond to distinct clusters of aerosol composition, and each cluster with speciated composition 
of the total 𝐴𝐴 PM1 mass within a range of 𝐴𝐴 ± 2.5% to ensure in-cluster homogeneity as well as each cluster 
spanning the entire range of 𝐴𝐴 PM1 total mass. The clusters are determined with the aid of an unsupervised 
ML technique (𝐴𝐴 𝐴𝐴 -means clustering), described in the Text S2 and illustrated in Figures S12 and S13. Thus 

Figure 3.  Aerosol mass and composition carry its number size distribution information. Average (generalized additive model) airborne measured aerosol 
number size distributions (PNSD) normalized to 𝐴𝐴 ≈ 60 nm. For (purple, dotted-dashed) 𝐴𝐴 PMtot ≤ 1 μg𝐴𝐴 ⋅ m−3, and (orange, dashed) 𝐴𝐴 PMtot > 1 μg𝐴𝐴 ⋅ m−3. Solid black 
curve in (a) is for all data. (b) For each cluster: Cluster 1 (𝐴𝐴 SO4 : 19%–24%, OA: 66%–71%, 𝐴𝐴 NO3 : 0%–5%, and 𝐴𝐴 NH4 : 4.5%–9.5%), Cluster 2 (𝐴𝐴 SO4 : 19%–24%, OA: 37%–
42%, 𝐴𝐴 NO3 : 22%–27%, and 𝐴𝐴 NH4 : 12%–17%), Cluster 3 (𝐴𝐴 SO4 : 47.5%–52.5%, OA: 37%–42%, 𝐴𝐴 NO3 : 0%–5%, and 𝐴𝐴 NH4 : 6%–11%), Cluster 4 (𝐴𝐴 SO4 : 0.5%–5.5%, 𝐴𝐴 OA : 91%–96%, 

𝐴𝐴 NO3 : 0%–5%, and 𝐴𝐴 NH4 : 0%–5%), and (black) respective cluster-wise average. Typical aerosol composition for each cluster is illustrated by the inset pie charts.
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aerosol mass and composition confer to the RFRM-PM the ability to implicitly consider the PNSDs per-
tinent to 𝐴𝐴 PM1 mass and speciation in its derivation of [CCN0.4] and enhance its skill compared to linear 
regression with an assumed mean PNSD.

3.3.  Further Size Information Can Be Machine-Learned From Additional Chemistry and 
Meteorology

To examine why RFRM is more robust than RFRM-PM in its derivation of [CCN0.4], we consider the subset 
of the data where RFRM-derived [CCN0.4] is in good-agreement with airborne measurements. Counter-
intuitively, RFRM-PM overestimates (FB 𝐴𝐴 𝐴 0.6 ) mostly (83.6%) when higher [CCN0.4] is measured and 
underestimates (FB 𝐴𝐴 𝐴 −0.6 ) mostly (82.4%) when lower [CCN0.4] is measured. This is indicative that rather 
than a general bias in the RFRM, it is the non-consideration of the predictors other than PM speciation con-
tributing to the RFRM-PM bias. In Figure 4, RFRM-PM-derived [CCN0.4] is classified into excellent-agree-
ment (𝐴𝐴 |FB| < 0.2 ; roughly 22% deviation from airborne measurement of [CCN0.4]; black), overestimation 
(orange), and underestimation (purple). The percentages corresponding to these classes are noted in each 
campaign's panel. Illustrated are the typical PNSD normalized to the 𝐴𝐴 ∼ 60  nm diameter, corresponding 
roughly to the cut-off size of CCN0.4. Across all campaigns, differences in these size distributions with 
respect to the degree of estimation remain consistent. More detailed differences in PNSD across the ver-
tical extent of the troposphere are also illustrated in Figure S11. In the scenario of a more typical PNSD, 
with high Aitken and low accumulation mode, both RFRM and RFRM-PM are in agreement with meas-
urements. When the accumulation mode is much higher and Aitken mode is much lower than average, 
RFRM is in agreement but RFRM-PM overestimates. This is because the aerosol mass distribution toward 
the larger diameters results in less numerous particles than a mean size distribution would suggest. When 
the Aitken mode is much higher and the accumulation mode much lower than average, the corollary fol-
lows. The additional consideration of chemical species of 𝐴𝐴 SO2 , 𝐴𝐴 NO𝑥𝑥 , and 𝐴𝐴 O3 and meteorology (T and RH), 
which are important for chemistry and gas-to-particle conversion (including new particle formation and 
growth) and hence PNSD, enables RFRM to contain more discerning subspaces for its decision making than 
RFRM-PM. With regards to the PNSD, these additional predictors carry rich information about the air mass 
history, sources of primary aerosols, and occurrence of atmospheric new particle formation and growth 
and photochemical processing toward the secondary aerosol formation. Future investigations will focus 

Figure 4.  Machine learning can extract aerosol number size information from chemistry and meteorology. Average 
(generalized additive model) aerosol number size distributions (PNSD) normalized to 𝐴𝐴 ≈ 60 nm for each campaign: (a) 
ARCTAS, (b) ATom1–4, (c) DC3, (d) DISCOVER-AQTX, (e) KORUS-AQ, (f) SEAC4RS, and (g) WE-CAN. Data shown for 
the subset of RFRM in good-agreement and where RFRM-PM (orange) overestimates, (purple) underestimates, or is 
in (black) excellent agreement with airborne measurements of [CCN0.4]. Percentage of the number of observations in 
each class of degree of agreement shown with respectively colored text in panel sub-headings.
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on comprehensive assessment of individual contributions of each predictor variable, consideration of all 
variables in the full-RFRM pertinent toward the improved reflection of the ambient PNSD, and delineation 
of the physicochemical processes that determine CCN (spectrum) number concentrations.

4.  Conclusions
This work demonstrates, using comprehensive airborne multi-campaign measurements encompassing the 
varied physicochemical conditions across the troposphere, the overall success of ML in deriving CCN num-
ber concentrations. Importantly, ML can extract aerosol size information from aerosol composition and 
additionally from atmospheric chemical and meteorological variables; this demonstrates that the statistical 
learning of ML/AI algorithms is emergent from the underlying physical (and chemical) laws. This physic-
ochemically explainable and robust ML model can provide a computationally efficient pathway for a more 
accurate representation of CCN in GCMs. This may potentially reduce the uncertainties associated with 
aerosol-cloud interactions in the assessment of anthropogenic forcing and climate change projection.

Data Availability Statement
Data from the following aircraft campaigns were used in this study—ARCTAS (Jacob et al., 2010): ARCTAS 
Team (2020), ATom1–4 (Brock, Williamson, et al., 2019): Allen et al. (2019), Brock, Kupc, et al. (2019), Jime-
nez et al. (2019), and Ryerson et al. (2019), DC3 (Barth et al., 2015): DC3 Team (2013), DISCOVER-AQTX: 
DISCOVER-AQ Team (2014), KORUS-AQ (Jordan et al., 2020): KORUS-AQ Team (2018), SEAC4RS (Toon 
et  al.,  2016): SEAC4RS Team  (2014), WE-CAN: WE-CAN Team  (2019). Additional dual column CCNc 
measurement (Uin et al., 2017a, 2017b) data were obtained from the Atmospheric Radiation Measurement 
(ARM) user facility, a U.S. Department of Energy (DOE) Office of Science User Facility managed by the 
Biological and Environmental Research program. All data sets used in this study are publicly available and 
individually detailed as follows:

•	 �[CCN0.18–0.86], PNSD, PM1 composition and mass, [SO2], [NOx], [O3], T, and RH measured during the 
ARCTAS (Jacob et  al.,  2010) campaign: ARCTAS Team (2020, https://www-air.larc.nasa.gov/cgi-bin/
ArcView/arctas).

•	 �PNSD, PM1 composition and mass, [SO2], [NOx], [O3], T, and RH measured during the ATom1–4 (Brock, 
Williamson, et al., 2019) campaigns: Allen, Crounse, Kim, Teng, and Wennberg (2019); Ryerson, Thomp-
son, Peischl, and Bourgeois (2019); Jimenez et al. (2019); Brock, Kupc, et al. (2019, https://espo.nasa.
gov/atom/archive/browse/atom/DC8).

•	 �[CCN0.13–0.68], PNSD, PM1 composition and mass, [SO2], [NOx], [O3], T, and RH measured during 
the DC3 (Barth et  al.,  2015) campaign: DC3 Team (2013, https://www-air.larc.nasa.gov/missions/
dc3-seac4rs/).

•	 �[CCN0.14–0.60], PNSD, PM composition and mass, [SO2], [NOx], [O3], T, and RH measured during 
the DISCOVER-AQTX campaign: DISCOVER-AQ Team (2014, https://www-air.larc.nasa.gov/cgi-bin/
ArcView/discover-aq.tx-2013).

•	 �[CCN0.6], PNSD, PM1 composition and mass, [SO2], [NOx], [O3], T, and RH measured during the 
KORUS-AQ (Jordan et  al.,  2020) campaign: KORUS-AQ Team (2018, https://www-air.larc.nasa.gov/
missions/korus-aq/).

•	 �[CCN0.09–0.56], PNSD, PM1 composition and mass, [SO2], [NOx], [O3], T, and RH measured during the 
SEAC4RS (Toon et al., 2016) campaign: SEAC4RS Team (2014, https://www-air.larc.nasa.gov/cgi-bin/
ArcView/seac4rs).

•	 �[CCN0.079–0.73], PNSD, PM1 composition and mass, [SO2], [NOx], [O3], T, and RH measured during the 
WE-CAN campaign: WE-CAN Team (2019, https://www-air.larc.nasa.gov/cgi-bin/ArcView/firexaq).

•	 �Dual column CCNc measurement (Uin et al., 2017a, 2017b) data were obtained from the Atmospheric 
Radiation Measurement (ARM) user facility, a U.S. Department of Energy (DOE) Office of Science User 
Facility managed by the Biological and Environmental Research program, which is publicly available at 
the ARM Discovery Data Portal (https://www.archive.arm.gov/discovery/).
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