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A B S T R A C T   

Background: The spatiotemporal and demographic disparities in exposure to ultrafine particles (UFP; number 
concentrations of particulate matter (PM) with diameter ≤0.1 μm), a key subcomponent of fine aerosols (PM2.5; 
mass concentrations of PM ≤ 2.5 μm), have not been well studied. 
Objective: To quantify and compare the aerosol pollutant exposure disparities for UFP and PM2.5 by socio- 
demographic factors in New York State (NYS). 
Methods: Ambient atmospheric UFP and PM2.5 were quantified using a global three-dimensional model of 
chemical transport with state-of-the-science aerosol microphysical processes validated extensively with obser-
vations. We matched these to U.S. census demographic data for varied spatial scales (state, county, county 
subdivision) and derived population-weighted aerosol exposure estimates. Aerosol exposure disparities for each 
demographic and socioeconomic (SES) indicator, with a focus on race-ethnicity and income, were quantified for 
the period 2013–2020. 
Results: The average NYS resident was exposed to 4451 #⋅cm− 3 UFP and 7.87 μg⋅m− 3 PM2.5 in 2013–2020, but 
minority race-ethnicity groups were invariably exposed to greater daily aerosol pollution (UFP: +75.0% & PM2.5: 
+16.2%). UFP has increased since 2017 and is temporally and seasonally out-of-phase with PM2.5. Race-ethnicity 
exposure disparities for PM2.5 have declined over time; by − 6% from 2013 to 2017 and plateaued thereafter 
despite its decreasing concentrations. In contrast, these disparities have increased (+12.5–13.5%) for UFP. The 
aerosol pollution exposure disparities were the highest for low-income minorities and were more amplified for 
UFP than PM2.5. 
Discussion: We identified large disparities in aerosol pollution exposure by urbanization level and socio- 
demographics in NYS residents. Jurisdictions with higher proportions of race-ethnicity minorities, low-income 
residents, and greater urbanization were disproportionately exposed to higher concentrations of UFP and 
PM2.5 than other NYS residents. These race-ethnicity exposure disparities were much larger, more dispropor-
tionate, and unabating over time for UFP compared to PM2.5 across various income strata and levels of 
urbanicity.   

1. Introduction 

Air pollution is the leading environmental risk factor globally for 
mortality and disability-adjusted life-years (GBD, 2019). Air pollution is 
characterized by a mix of toxic gases and aerosols. Atmospheric aerosols 
or particulate matter are suspensions of tiny particles of solid, liquid, or 
mixed states with varied sources, compositions, and size distributions. In 

the last decade, the largest increase in risk exposure has been for 
ambient particulate matter (PM) pollution (GBD, 2019). The mass 
concentrations of PM with aerodynamic diameter ≤2.5 μm or PM2.5 as 
an indicator of fine particles, with a health-relevant size range, has been 
recognized as the most important for air pollution health effects (Fuller 
et al., 2022; Southerland et al., 2022). However, there is recent 
increasing evidence that its component ultrafine particles (≤0.1 μm) can 
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have an outsized effect (HEI, 2013; e Oliveira et al., 2019; Moreno-Ríos 
et al., 2022) despite their small contribution to the total aerosol mass 
(Seinfeld and Pandis, 2016). These outsized effects that can make ul-
trafine particles potentially more important than PM2.5 are due to their 
smaller size, higher numbers, larger surface area to volume ratio, higher 
lung penetration and deposition efficiency, longer atmospheric resi-
dence times (when the PM2.5 condensation sink is low), and secondary 
formation from pollutant gases such as acidic sulfur dioxide and nitro-
gen oxides and alkaline ammonia (Lee et al., 2019). While there may be 
the implicit policy assumption that PM2.5 regulation also regulates their 
ultrafine component, this is countered by our scientific understanding 
(Seinfeld and Pandis, 2016) and with evidence that PM2.5 and ultrafine 
particles are not correlated (de Jesus et al., 2019). Yet, ultrafine particles 
are not regulated or designated as a criteria pollutant. Considering that 
PM2.5 declines may not be accompanied by reductions in ultrafine par-
ticles, it is important to comprehensively examine their exposures. 

Exposure to air pollution and its health impact associations have 
disproportionate demographic and socioeconomic influences (Hajat 
et al., 2015; Tessum et al., 2021). Previous studies have found that 
minority race-ethnicity and low-income subgroups have larger air 
pollution exposure for PM2.5 (and other criteria pollutants including 
PM10, SO2, NO2, O3, and CO) and associated health effects (Liu et al., 
2021; Jbaily et al., 2022) and more recent studies (Saha et al., 2022; 
Elford and Adams, 2021) have examined the ultrafine particle exposure 
disparities. These North American studies using land-use regression es-
timates (Saha et al., 2022; Chambliss et al., 2021; Elford and Adams, 
2021) and mobile monitoring (Chambliss et al., 2021) find 
race-ethnicity and demographic disparities in UFP exposure with the 
potential for inequality patterns differing from other air pollutants. 
However, there remain knowledge gaps due to limitations of spatial and 
temporal scopes and the paucity of ultrafine particle measurements 
potentially introducing sampling biases. It is therefore important to 
examine the socioeconomic disparities in ultrafine particle exposure on 
larger temporal and spatial scales. 

To fill the knowledge gaps described above, the objective of our 
research was to compare the difference between and quantify the so-
cioeconomic disparities for ultrafine particle and PM2.5 exposure in New 
York State (NYS). This study focuses on NYS due to the success of na-
tional and state environmental policies in reducing PM2.5 concentrations 
(Rattigan et al., 2016), the consequent impact of cleaner air potentially 
prolonging the atmospheric lifetime of UFP (Seinfeld and Pandis, 2016), 
and the availability of a high-quality hospital registry (SPARCS, 2023) 
for future studies seeking to understand aerosol-health associations and 
their socio-demographic disparities. We hypothesized that ultrafine 
particle exposure disparities exist and differ from those of PM2.5. Spe-
cifically, we examined the spatiotemporal variations in aerosol pollut-
ants (ultrafine particles & PM2.5) exposure over NYS from 2013 to 2020, 
their potential modifications by the urbanization level of residence, and 
for differential influences by race-ethnicity and income levels. 

2. Methods 

Toward testing our hypothesis, we combine the US Census Bureau’s 
American Community Survey (ACS) demographic data with modeled 
ambient aerosol concentrations. We specifically examine exposure dis-
parities among seven race-ethnicity groups and by household income 
across varied spatial scales (state, county, and county subdivision) and 
National Center for Health Statistics (NCHS) urbanicity levels in NYS 
during the period 2013–2020 for the number concentrations of partic-
ulate matter with diameter ≤0.1 μm (UFP) and mass concentrations of 
particulate matter with diameter ≤2.5 μm (PM2.5). 

2.1. Aerosol concentrations data 

There is a dearth, in terms of spatial distribution and temporal 
continuity and resolution, of ultrafine particle measurements in NYS. 

For this reason, UFP was quantified using a publicly available global 
model of atmospheric chemistry and transport coupled with a state-of- 
the-science advanced particle microphysics model that has been 
comprehensively validated with laboratory and global in-situ measure-
ments. The GEOS-Chem model is a global 3-D model of atmospheric 
composition driven by assimilated meteorological observations from the 
Goddard Earth Observing System (GEOS) of the NASA Global Modeling 
Assimilation Office (GMAO). The model has been developed and used by 
many research groups and contains a number of state-of-the-art modules 
treating various chemical and aerosol processes (Bey et al., 2001; Martin 
et al., 2003; Park et al., 2004; Evans and Jacob, 2005; Liao et al., 2007; 
Fountoukis and Nenes, 2007) with up-to-date key emission inventories 
(Guenther et al., 2006; Bond et al., 2007). 

The Advanced Particle Microphysics (APM) model, incorporated into 
GEOS-Chem by Yu and Luo (2009), is an advanced multi-type, multi--
component, size-resolved microphysics model. 40 sectional bins repre-
sent secondary particles covering dry diameters ranging from 0.0012 μm 
to 12 μm, with high resolution for the particle size range important for 
growth of nucleated particles. 20 sectional bins represent sea-salt, 
covering dry diameters from 0.012 to 12 μm, 15 bins represent dust 
from 0.03 to 50 μm, 15 bins each for tracking primary black carbon (BC) 
and organic carbon (OC) from 0.03 to 1 μm separately. Sulfate and other 
secondary species coating on primary particles such as BC, OC, sea-salt, 
and dust are considered here. The aging of BC and OC that turns the 
hydrophobic BC and OC hydrophilic is considered based on the quantity 
of secondary species coated on them. Aerosols in-air and in-cloud are 
traced separately. Size-resolved particle microphysics (nucleation, 
coagulation, condensation/evaporation, and dry and wet deposition) 
important for aerosols is explicitly considered. The formation of new 
particles is calculated with state-of-the-science nucleation schemes (Yu 
et al., 2017, 2018, 2020). The kinetic condensation of low volatility 
secondary organic gas and H2SO4 gas on nucleated particles is calculated 
based on a scheme that considers the volatility changes of secondary 
organic gases (SOG) arising from the oxidation aging (Yu, 2011). The 
contributions of nitrate, ammonium, and semi-volatile secondary 
organic aerosols (SOA) to particle growth are considered. Via the 
coating process caused by coagulation, condensation, and in-cloud 
oxidation, secondary species can assimilate with primary particles and 
be transported and scavenged. 

GEOS-Chem-APM has been extensively used, improved, and vali-
dated with global atmospheric measurements and robustly quantifies 
aerosol size distributions, aerosol numbers and aerosol mass (e.g., Yu 
and Luo, 2009; Nair et al., 2021). We quantify UFP and PM2.5 over New 
York State from 2013 to 2020 by running GEOS-Chem-APM in the 
nested grid configuration with a spatial resolution of 0.25◦ × 0.3125◦

and we output hourly data for the near surface layer in which exposure 
to aerosol pollution occurs. 

2.2. Demographic data 

Socioeconomic and demographic data was obtained from the pub-
licly available 2015–2019 5-year estimates from the American Com-
munity Survey (ACS) owing to the multi-year estimates having higher 
reliability at smaller spatial scales and for smaller subpopulations. Data 
access was facilitated by the Census Bureau’s Data APIs and the tidy-
census package (Walker and Herman, 2023) in R (R Core Team, 2023). 
Considering the increasing margin of error for population estimates of 
subgroups with increasing spatial resolution (Wong and Sun, 2013; 
Spielman and Singleton, 2015), the spatial resolution of the modeled 
aerosol concentrations, and the eight-year period of study, the most 
balanced finest spatial scale identified and used in this study is the 
county subdivision. The mean spatial span of an NYS county subdivision 
is 0.14◦ (IQR: 0.10◦–0.16◦) compared to 0.28◦ for the GEOS-Chem-APM 
grid. The variables of interest are the spatial boundaries of geographic 
areas (state, county, and county subdivision), population estimates by 
race-ethnicity groups, and median household income. The seven 
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race-ethnicity groups considered here are Hispanic (Hispanics of any 
race), Asian (non-Hispanic Asian alone), Black (non-Hispanic Black or 
African American alone), Native (non-Hispanic American Indian or 
Native American alone), Other (non-Hispanic Other alone or two/more 
races), Pacific (non-Hispanic Native Hawaiian or other Pacific Islander 
alone), and White (non-Hispanic White alone). Median household in-
come is used as an indicator of economic status. In this paper, the term 
race-ethnicity minority refers to the subset of the population that is not 
White (as defined above). In the analysis presented here, the economic 
status classifications are Low (<25th percentile), Middle (25th–75th 
percentile), and High (>75th percentile) median household income, 
which we derive for each of the above race-ethnicity groups. Supple-
mentary analyses (Text S1) use additional indicators of economic status 
such as poverty level, house ownership, ratio of income to poverty level, 
and income brackets, as well as age. Since the link between urbanicity 
and health outcomes is well-established, the National Center for Health 
Statistics’ (NCHS) six-level urban-rural classification scheme—four 
metropolitan (large central, large fringe, medium, and small metro) and 
two non-metropolitan (micropolitan and noncore)—is applied in the 
present study. 

2.3. Study design 

2.3.1. Aerosol exposure definition 
Demographic and aerosol concentration data were matched by 

county subdivision boundaries. Aggregation to higher groups (spatial/ 
urbanicity/race-ethnicity/income) was carried out by the population- 
weighted geometric means, considering the lognormal nature of both 
UFP and PM2.5 distributions and to better capture their central tendency 
in further aggregations. For example, average exposure was determined 
using the following formula: 

Eij =

∑n
j=1 log10

(
Cj
)
popij

∑n
j=1popij  

where, the subscript i indicates the subgroup of interest, the subscript j 
indicates the jurisdiction (out of n), C is the atmospheric pollutant 
concentration, and pop is the population. Sensitivity analyses for the 
temporal scale (Text S2) are additionally carried out with the >90th 
percentile hourly exposures for each day, since there currently exists no 
prescribed threshold criteria for UFP, to provide further corroboration of 
findings. 

2.3.2. Disparity metrics definition 
All disparity metrics are calculated using the above defined 

population-weighted aerosol exposure and presented relative to an 
indicated reference group, which may be the average population or the 
least exposed sub-group (in this study, Non-Hispanic White). Three 
metrics are used in-text to quantify disparity: (1) absolute difference in 
exposures (ΔEij = Eij − Erj), (2) relative percentage difference in expo-
sures (%E = ΔEij / Erj × 100%), and (3) representation bias in de-
mographic proportion as: 

Representation Bias=

⎛

⎝
∑

j90

popij

popj
−
∑n

j=1

popij

popj

⎞

⎠× 100%  

where the subscript i indicates the subgroup of interest, the subscript r 
indicates the reference subgroup, the subscript j indicates the jurisdic-
tion, and pop is the population. Here, the representation bias is defined 
as the percentage difference between a subgroup’s proportion in juris-
dictions with >90th percentile pollutant exposure (j90) compared to all 
jurisdictions. The third metric is useful to identify if a subgroup (say, a 
racial minority) has different representation than expected. The three 
disparity metrics are presented for the urbanicity levels, race-ethnicity 
groups, income groups or their nested sub-groups as defined in Section 

2.2. 

2.3.3. Temporal variability 
The daily (geometric mean and 90th percentile) aerosol pollutant 

(UFP & PM2.5) concentrations are calculated from the hourly values 
quantified using GEOS-Chem-APM (Section 2.1.). These are then 
matched to the population (Section 2.3.1.) and exposure disparities 
calculated (Section 2.3.2.). To smooth out short-term variabilities 
arising from the intra-annual effects of meteorology and emissions 
variability, we present the yearly-moving average, which is the average 
of daily values (of exposure or its disparity metrics) in a 1-year moving 
window. 

3. Results 

3.1. Spatiotemporal aerosol exposure in NYS, 2013–2020 

Fig. 1(a&b) shows the period-averaged (geometric mean) aerosol 
concentrations (UFP and PM2.5) and their large variability over NYS by 
county subdivision during the period 2013–2020. For NYS overall, their 
population-weighted values are 4451 #⋅cm− 3 for UFP and 7.87 μg m− 3 

for PM2.5 and their area-weighted values are 1649 #⋅cm− 3 for UFP and 
6.19 μg m− 3 for PM2.5. The largest values are typically over the New 
York Metropolitan Areas (NYMA) as shown in the insets in Fig. 1(a&b). 
Table 1 shows that both UFP and PM2.5, unsurprisingly, increase with 
the level of urbanization. The yearly-moving average, which smooths 
out short-term variabilities (including the intra-annual effects of mete-
orology and emissions variability), is shown in Fig. 1(c). The monthly 
moving average, in Fig. 1(d), shows that UFP and PM2.5 are also 
seasonally out of phase. While UFP and PM2.5 may have appeared to be 
correlated in Fig. 1(a&b), when considering the temporal dimension 
(daily), there is no/weak correlation as seen in Fig. 1(e). This translates 
to no/weak spatiotemporal association between UFP and PM2.5 as 
illustrated in Fig. 1(f). Even for longer temporal scales, such associations 
are weak (Fig. 1(c&d)). These serve to illustrate the dissimilar trends and 
variations of UFP and PM2.5 and additionally uncover that their re-
ductions have tapered out in recent years. 

3.2. Aerosol exposure disparities by race-ethnicity and urbanicity 

Fig. 2 shows the aerosol exposure disparities for aggregated race- 
ethnicity minorities compared to the non-Hispanic White subgroup. 
UFP exposure disparities are large in absolute (2600–3200 #⋅cm− 3) and 
relative (65–80%) terms. In comparison, PM2.5 exposure disparities 
during this period are 1–2 μg m− 3 in absolute terms and 14–20% in 
relative terms. Apart from the observed larger magnitude of UFP expo-
sure disparities (in both absolute and relative terms) compared to PM2.5, 
there are differences in their temporal trends illustrated in Fig. 2 using 
generalized additive model fits. PM2.5 exposure race-ethnicity dispar-
ities (absolute & relative) show a continuously declining temporal trend. 
For UFP, however, there is no statistically significant trend in the ab-
solute disparity and indicating that in addition to the larger magnitude 
they remain unabating over time. In relative terms, the UFP disparities 
are increasing from 2013 to 2017, plateauing at their high values from 
2017 to 2019, declining in 2019, and again increasing in response to the 
concentration reductions during the COVID-19 pandemic period. While 
illustrative of the overall differences, we will not dwell further on these 
observations, since the effect of urbanization level on health outcomes 
and pollutant exposure are important, and it is crucial to also consider 
urbanicity when exploring these disparities. 

Fig. 3 shows the trend and absolute magnitude of population- 
weighted aerosol exposure over NYS for each race-ethnicity group (see 
Table 1) with facets corresponding to the NCHS urbanicity levels. In 
large (central and fringe) metropolitan areas, UFP exposure has been the 
highest and remained mostly constant over the eight-year period (Fig. 3 
(a)-i–ii). Linear fits on Fig. 3 (see Supplementary Fig. S1) to estimate the 
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temporal percent change (Table 2) show small increases (2013–2020: 
0.0 to +2.2%; 2013–2019: − 0.8 to +3.1%) for minority race-ethnicity 
subgroups and a smaller increase (2013–2020: +0.69%) for the White 
subgroup. This is unlike that for PM2.5 (Fig. 3(b)-i–ii), which has 

demonstrated large decreases over the period for minority race-ethnicity 
(2013–2020:− 14.7 to − 13.1%; 2013–2019: − 9.9 to − 11.9%) and White 
(2013–2020: − 12.8%; 2013–2019: − 9.6%) subgroups. In areas of lower 
levels of urbanization (Fig. 3(a)-iii–vi), the initial decline 

Fig. 1. Characteristics of ultrafine particle number concentrations (UFP) and PM2.5 over New York State (NYS) from 2013 to 2020. (Top) Spatial distributions of 
period averaged values for (a) UFP and (b) PM2.5. Insets for New York Metropolitan Areas (NYMA). (Center) Time series (moving average) for UFP (orange) and 
PM2.5 (blue) showing (c) yearly and (d) monthly variations of aerosol concentrations over NYS. (Bottom) Extent of daily UFP–PM2.5 correlation: (e) binned scatter 
plot and (f) spatial Kendall rank correlation coefficient (τ) at the county subdivision level. 
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(− 17.7–20.4%) in UFP starts a reversal from the year 2017 onwards 
with increasing (2017–2020: +12.5 to +13.5%; 2017–2019: +6.0 to 
+7.4%) absolute UFP exposure for all race-ethnicity subgroups. For 
PM2.5 (Fig. 3(a)-iii–vi), ignoring the reduction in 2020 associated with 
the COVID-19 pandemic period reduction of its (and precursor) emis-
sions, the initial decline (2013–2017: − 8.5 to − 7.7%) is followed by a 
reversal (+7.5 to +8.2%). Invariably, the average NYS resident 
belonging to the Black, Hispanic, Asian, and Other race-ethnicity groups 
are exposed to higher absolute UFP than White individuals (Fig. 3(a)). In 
large (central and fringe) metropolitan areas, which are areas of high 

UFP concentrations, these exposure disparities are largest, particularly 
for Asians (Fig. 3(a)-i–ii). Although these exposure inequalities are also 
demonstrated for PM2.5, they are not as large as those for UFP. 

Fig. 4 shows the race-ethnicity overrepresentation percentages for 
the worst-aerosol-exposed jurisdictions for each NCHS urbanicity level. 
Since UFP is not a designated criteria pollutant and the limited number 
of existing epidemiological studies show wide variability in discerning a 
critical threshold, we use an arbitrary 90th percentile cutoff for daily 
highest UFP exposure for county subdivisions grouped at the NCHS 
urbanicity level. Fig. 4(a) shows that across all levels of urbanization, 

Table 1 
Distribution statistics for daily population-weighted UFP and PM2.5 exposure in New York State during 2013–2020 by urbanicity and race-ethnicity groupings (for 
other socioeconomic factors see Table S1). Total population for NYS is 19,572,319 and the percentage of population (%-pop.) is rounded to two decimal places. UFP is 
rounded to a whole number and PM2.5 is rounded to two decimal places.   

% pop. UFP (#⋅cm− 3) PM2.5 (μg⋅m− 3) 

Exposure Percentiles 

10th 25th 50th 75th 90th 10th 25th 50th 75th 90th 

Urbanicity 
Metropolitan Large central 51.50 3558 4875 6781 9573 12508 4.00 5.81 8.92 13.51 18.96 

Large fringe 27.83 2111 2945 4199 5886 8035 3.24 4.78 7.62 11.79 17.24 
Medium 9.33 958 1383 1957 2761 3711 2.82 4.33 6.77 10.06 14.39 
Small 5.02 916 1208 1623 2248 3002 2.83 4.17 6.48 9.46 13.60 

Micropolitan 1.99 791 1119 1544 2171 2988 2.68 4.00 6.29 9.34 13.47 
Noncore 4.33 868 1251 1745 2462 3350 2.79 4.23 6.74 10.07 14.52 
Race-ethnicity 
Hispanic 19.01 3195 4439 6195 8805 12001 3.83 5.57 8.69 13.23 18.76 
Non-Hispanic Asian 8.35 3390 4722 6588 9377 12580 3.95 5.69 8.83 13.45 19.10 

Black 14.26 3110 4337 5962 8469 11228 3.82 5.57 8.63 13.05 18.41 
Native 0.24 1991 2592 3498 4736 6165 3.40 4.90 7.64 11.12 15.74 
Other 2.51 2547 3467 4733 6668 8729 3.64 5.28 8.19 12.26 17.27 
Pacific 0.03 2420 3284 4438 6216 8109 3.65 5.24 8.15 12.10 17.18 
White 55.61 1908 2609 3505 4822 6320 3.37 4.86 7.65 11.14 16.16  

Fig. 2. Yearly moving average for the temporal evolution of race-ethnicity disparities in aerosol pollutant exposure in (top) absolute terms and (bottom) relative 
terms. Dashed curve indicates the generalized additive model (GAM) fits on the daily data and the associated shading in grey the 95% C.I. for the fits. Disparities are 
presented for the aggregated race-ethnicity minority group compared to non-Hispanic White subgroup. Socio-demographic information is from the American 
Community Survey 2015–2019 5-year data. Shown on the left (orange) are these for UFP and on the right (blue) for PM2.5. UFP exposure disparities are larger and 
unabating as compared to those for PM2.5. 
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the non-Hispanic White group is underrepresented in the jurisdictions 
with the top 10% UFP exposure. Typically, these high-exposure county 
subdivisions are populated by more minority race-ethnicity groups than 
average. A similar analysis is presented in Fig. 4(b) for PM2.5, to place 
the findings for UFP illustrated in Fig. 4(a) in context. Fig. 4(b) dem-
onstrates that the disparities in PM2.5 exposure do not reflect those in 
UFP exposure. PM2.5 exposure disparities by race-ethnicity have been 
declining in absolute and relative terms. Furthermore, these disparities 
are negligible outside large metropolitan areas. Classification by the 
NCHS urban levels and not simply by a binomial factor of urban/rural 
also reveals that in metropolitan areas, with some of the highest (>90th 
percentile) PM2.5 burden, the relative exposure disparities for minority 
race-ethnicity groups (Fig. 4(b)-i–ii) are lower and furthermore have 
been reducing over time. This contrasts with the observation for UFP 
exposure disparities (Fig. 4(a)-i–ii), which are higher and have remained 
fairly unchanged or slightly increasing over the period. 

3.3. Large race-ethnicity disparities in aerosol exposure are magnified in 
low-income groups 

Fig. 5(a) illustrates the relative excess daily aerosol exposure for an 
average minority race-ethnicity individual compared to an average non- 
Hispanic White individual for each urbanization level. The disparity is 
much greater for UFP (Fig. 5(a)-i) than for PM2.5 (Fig. 5(a)-ii). The only 
overall significant PM2.5 race-ethnicity exposure disparities are for the 
large central metro jurisdictions. For UFP, these disparities are persis-
tent and increase as the level of urbanization increases. Fig. 5(b) com-
pares these excess daily aerosol exposures for minority race-ethnicity 
individuals for each economic status classifications relative to non- 
Hispanic White individuals in the corresponding classification, i.e., 
Low-income Hispanic to Low-income non-Hispanic White and so on. 
This further illustrates that the race-ethnicity disparities persist across 
income levels and are dramatically magnified in economically vulner-
able groups (lowest quartile) for aerosol pollution and are greatest for 
UFP. 

Fig. 3. Yearly moving average for (a) UFP and (b) PM2.5 population-weighted exposure at the county subdivision level in NYS during 2013–2020. Shown for each 
race-ethnicity group (color legend) with facets corresponding to each NCHS urbanization level (i–vi). 
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4. Discussion 

4.1. Characterizing UFP and need to understand its exposures 

In this study, we characterize ultrafine particles by number con-
centration (UFP) rather than mass concentration (PM0.1). Ultrafine 
particles, by virtue of their small sizes, may not carry much mass. For 
instance, ~1.6 × 104 particles of 0.1 μm carry as much mass as a single 
particle of 2.5 μm. From microphysical considerations, although the 
aerosol mass contribution of ultrafine particles may be small, they 
contribute to the largest number of ambient atmospheric particles. 
Additionally, ultrafine particles, especially those between 0.05 and 0.1 
μm, can dominate the net particle surface area. Aside from the micro-
physics, the changing atmospheric environment, that of its declining 
condensational sinks, increasing ambient atmospheric alkaline 
ammonia (Nair and Yu, 2020) and tapering reductions in the acidic 
sulfur dioxide and nitrogen oxide gases (for secondary particle forma-
tion and growth) and other factors such as criteria air pollutant miti-
gation strategies (Cheng et al., 2019) that may inadvertently induce new 
particle formation, may further increase the preeminence and role of 
UFP. Aside from the microphysics and the changing atmospheric envi-
ronment, in-vitro and modeling studies demonstrate that UFP, largely 
due to their unique microphysical properties, are efficient in penetrating 
the respiratory tract (Peters et al., 2006; Sturm, 2016a; Traboulsi et al., 
2017), capable of inducing large physiological stress and inflammation 
(Leikauf et al., 2020; Schraufnagel, 2020), and demonstrate higher 
ability to cross barriers (Terzano et al., 2010; Chen et al., 2016; Selvaraj 
et al., 2018; Bongaerts et al., 2020) such as the alveolar-blood, blood--
brain, nose-to-brain pathways, placental membranes, and even down to 
the subcellular level, into cells and its organelles (Ohlwein et al., 2019 
and the references therein). Furthermore, additional microphysical 
considerations such as probability and location of deposition in the 
respiratory tract (Darquenne, 2012; Sturm, 2016a, 2016b), 
particle-membrane interactions (Oberdörster et al., 2005) such as 
localized exposure, adsorption, and diffusion deems it appropriate to 
characterize ultrafine particles by their number concentration as UFP. 
To digress, epidemiological studies exploring the effects of atmospheric 
aerosols initially observed that PM2.5 was a more robust parameter than 
PM10 for assessing health impacts; this was later understood to be due to 
its size-related microphysical properties. It may therefore be pertinent 
that our efforts at understanding the relationships between aerosols and 
health effects place weight on the aerosol size-dependencies, especially 

on the more numerous smaller-sized aerosols. 

4.2. UFP and PM2.5 exposure and their differences 

UFP and PM2.5 show no/negligible spatiotemporal correlation in 
New York State. In fact, the two are seasonally out of phase, with UFP 
being more dominant in the colder months. We also found that UFP has 
gradually increased since 2017 even during periods of PM2.5 decline in 
recent years. Pollution mitigation policies were expected to simulta-
neously reduce direct emissions of both PM2.5 and UFP as well as 
emissions of their precursor gases (for secondary aerosol formation). 
The observed increase in UFP is, however, in agreement with our un-
derstanding (Seinfeld and Pandis, 2016) that with the reduction of larger 
particles (~PM2.5) acting as coagulation sinks for smaller particles 
(~UFP), their atmospheric lifetime thus increases, as well as with ob-
servations (Chen et al., 2022). There may be additional inadvertent 
impacts of pollution control conducive to secondary UFP formation from 
cleaner gasoline (Zhao et al., 2017) and ammonia from Compressed 
Natural Gas (CNG) combustion (Nair and Yu, 2020), with the latter also 
having higher (than diesel) potential for direct emissions of UFP 
(Jayaratne et al., 2008) vehicle exhaust. By demonstrating the differ-
ential spatiotemporal variabilities, we highlight the potential fallacy in 
not designating UFP as criteria pollutant, possibly under the assumption 
that controls for PM2.5 would mitigate UFP. Adding the fact that the 
leading causes of deaths and morbidity are of the cardiovascular and 
cerebrovascular nature (e.g., GBD, 2019; Lin et al., 2022), and that these 
have been identified to be elevated in colder months (e.g., Lin et al., 
2018; Alahmad et al., 2023), UFP may have further outsized health ef-
fects, especially for New York State. 

4.3. Aerosol exposure disparities by urbanicity 

We uncover that the aerosol exposure inequalities by the urbaniza-
tion level of residence are more amplified for UFP exposure compared to 
that for PM2.5. While there are varied methods to categorize urbanicity, 
we use the 2013 NCHS urban-rural classification scheme. This classifi-
cation is robust as it considers the nuanced urban-rural differences in 
health measures. Unsurprisingly (Brender et al., 2011; Bell and Ebisu, 
2012; Colmer et al., 2020), due to the strong influence of anthropogenic 
sources of aerosols and their precursors, as the level of urbanization 
increases, so does the pollutant aerosol exposure. However, the extent of 
the urban-rural divide in aerosol exposures is found to be much larger 

Table 2 
Annual change (%) in aerosol pollutant concentrations by race-ethnicity and urbanicity. Urbanicity is dichotomized into Large (combined large central and large fringe 
metropolitan areas) and Lesser (combined medium and small metropolitan, micropolitan, and non-core areas). Percent change is estimated from the slope of linear fits 
(see Supplementary Figs. S1 and S2) on data presented in Fig. 3 for the time periods indicated below. Italicized text for percentage change estimated from fits with p- 
value ≥0.05. Boldface text for percentage change estimated from fits with R ≥ 0.5.  

Race Urban ΔUFP (%) ΔPM2.5 (%) 

Overall Period 2017 inflection Overall Period 2017 inflection 

2013 to 2020 2013 to 2019 2013 to 2017 2017 to 2020 2017 to 2019 2013 to 2020 2013 to 2019 2013 to 2017 2017 to 2020 2017 to 2019 

Supplementary Fig.: S1(a) S2(a) S1(b) S1(c) S2(c) S1(a) S2(a) S1(b) S1(c) S2(c) 

Asian Large 2.2 3.1 2.6 − 2.5 − 1.5 ¡14.7 ¡11.9 ¡11.5 − 3.6 7.9 
Lesser − 2.2 ¡8.5 ¡17.8 13.2 7.4 − 7.5 − 4.9 ¡8.2 − 2.4 8.1 

Black Large 2.2 2.8 1.4 − 1.7 − 0.7 ¡13.9 ¡11.0 ¡11.3 − 3.6 8.1 
Lesser − 1.8 ¡8.2 ¡17.7 13.2 7.3 − 7.6 − 4.9 ¡8.3 − 2.6 8.0 

Hispanic Large 2.2 2.7 1.0 − 1.8 − 0.9 ¡14.5 ¡11.7 ¡11.7 − 3.3 8.3 
Lesser − 3.0 ¡9.5 ¡19.5 13.1 7.2 − 7.9 − 5.0 ¡8.1 − 2.8 8.2 

Native Large 0.0 − 0.8 − 3.2 0.4 0.1 ¡13.1 ¡9.9 ¡11.3 − 4.0 8.1 
Lesser − 4.5 ¡10.7 ¡18.3 13.0 6.9 ¡8.5 − 5.5 ¡8.5 − 3.3 7.5 

Other Large 1.8 1.9 − 0.1 − 1.2 − 0.6 ¡13.8 ¡10.8 ¡11.4 − 3.7 8.1 
Lesser − 3.1 ¡9.6 ¡19.0 13.3 7.2 − 7.7 − 4.9 ¡8.2 − 2.7 8.1 

Pacific Large 1.5 1.6 ¡0.4 − 0.9 − 0.4 ¡13.5 ¡10.5 ¡11.2 − 3.7 8.1 
Lesser − 5.0 ¡11.4 ¡19.8 12.5 6.0 ¡8.1 − 5.2 ¡7.7 − 2.9 7.9 

White Large 0.7 − 0.2 ¡3.4 0.7 0.4 ¡12.8 ¡9.6 ¡11.0 − 3.9 8.3 
Lesser − 5.1 ¡11.7 ¡20.4 13.5 6.9 ¡8.3 − 5.3 ¡8.3 − 3.0 8.0  
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and unabating for UFP than that for PM2.5. 

4.4. Aerosol exposure disparities by urbanicity and race-ethnicity or 
economic status 

Overall, for NYS, non-Hispanic Whites were least exposed to UFP and 
PM2.5. Non-Hispanic Asian, Hispanics of any race, and Non-Hispanic 
Black or African American subgroups have especially disparate expo-
sures, with median exposures higher by 88%, 77%, and 70% for UFP and 
15%, 14%, and 13% for PM2.5, respectively. The large magnitudes of 
UFP exposure disparities uncovered here are important considering the 
future projected decreases of PM2.5 and increase of UFP (Turnock et al., 
2020) and the excess risks of deleterious health outcomes associated 
with UFP (Ohlwein et al., 2019). Typically, PM2.5 exposure disparities 
by race-ethnicity have been declining in absolute and relative terms in 
agreement with previous studies (Liu et al., 2021; Jbaily et al., 2022). 
Specifically for NYS, Liu et al., 2021 find a − 1.33 μg m− 3 decline in the 

absolute PM2.5 disparity from 2000 to 2010 and 10–20% higher PM2.5 
exposure for minorities. However, we also find that in recent years 
(2017–2019), there has been a reversal of trend for the absolute PM2.5 
exposure disparities but in relative terms the decline has continued 
albeit plateauing. It is important, however, to also examine these dis-
parities by urbanicity due to differences in absolute exposure levels and 
studies showing varied health outcomes. Since race-ethnicity minorities 
and low-income populations predominantly reside in urban areas, 
analysis without stratification by urbanization level may inadvertently 
inflate the aerosol exposure disparity estimates. Examination of 
race-ethnicity exposures separately for each NCHS urbanicity level, re-
veals that these minority subgroups are consistently the most exposed to 
UFP and PM2.5 across all levels of urbanicity in absolute and relative (to 
the least exposed subgroup) terms. The findings are corroborated with a 
sensitivity analysis using the 90th percentile (in the absence of a UFP 
threshold) of daily exposures identifying the most-exposed jurisdictions, 
which have a larger minority race-ethnicity proportion than on average. 

Fig. 4. For (a) UFP and (b) PM2.5 population-weighted exposure at the county subdivision level in NYS during 2013–2020, the representation bias for each race- 
ethnicity group (color legend) in the worst 10% exposure jurisdictions corresponding to each NCHS urbanization level (i–vi). Values for Native and Pacific 
groups are omitted due to small sample sizes resulting in high variability. 
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We find that economic status indicators of household income, poverty 
level, ratio of income to poverty level, and homeownership (after ac-
counting for urbanicity differences) by themselves are not associated 
with significantly different UFP exposures. 

4.5. Aerosol exposure disparities by urbanicity, race-ethnicity, and 
income 

Under the additional lens of economic status, we see that these ef-
fects are magnified for minority race-ethnicity subgroups within the 
lowest quartile of household income relative to non-Hispanic Whites. 
This is consistent with previous studies examining the impact of income 
inequalities on PM2.5 (Liu et al., 2021; Jbaily et al., 2022) and UFP (Saha 
et al., 2022). We find that income inequalities alone are not associated 
with significantly different UFP exposures, unless in interaction with 
race-ethnicity. Although exposure disparities have reduced over time for 
PM2.5, they have been increasing for UFP, and especially so in recent 
years. This may translate to more adverse aerosol-health effects for 
race-ethnicity minorities and vulnerable socioeconomic subgroups in an 
atmosphere deemed seemingly cleaner by air quality regulations. 
Indeed, there is mounting recent evidence that the benefits from clean 
air regulations are not translated proportionately to reductions in the 
associated health burden for minority race-ethnicity and SES subgroups. 
These findings may be linked to the atmospheric aerosol size distribu-
tions skewing toward smaller sizes with outsized health effects and re-
quires our immediate and further attention. 

Overall, we find that the aerosol exposure disparities were larger and 
more disproportionate for UFP compared to PM2.5. This observation 

arises from the differences in their spatial distribution. PM2.5 is typically 
regionally homogenous, with its composition being predominantly 
secondary after undergoing growth and/or aging processes (Fine et al., 
2008; Kim et al., 2020). While UFP is driven by regional new particle 
formation (nucleation) events, their concentrations are also impacted by 
local sources (particularly roadways) of primary (directly emitted) UFP 
as well as its gaseous precursors. Thus, there exists a greater degree of 
spatial heterogeneity in UFP, particularly important over urban areas 
(Gomǐsček et al., 2004; Puustinen et al., 2007; Wu et al., 2015; de Jesus 
et al., 2019). While local interventions can reduce concentration ex-
tremes experienced by race-ethnicity minorities, reduction of back-
ground UFP can be more effective at addressing population-wide 
race-ethnicity exposure disparities (Chambliss et al., 2021). 

This study has the following key strengths. One, this is the first study 
identifying and quantifying the spatiotemporal socio-demographic dis-
parities in ultrafine particle exposure. Two, a state-of-the-science model 
of atmospheric chemistry and transport is used to quantify atmospheric 
aerosol concentrations. An advantage of this model is the physical and 
chemical consistency in the quantification of pollutant aerosols and co- 
pollutant gases that may be lacking even in sets of direct measurements, 
due to variability in instrumentation protocols and other sources of 
error. Three, the large spatial scale, that of New York State, permits 
sensitivity analyses with respect to different spatial resolutions: the 
county subdivision and the coarser county level. Across these scales, the 
findings remain consistent. Four, the high temporal resolution permits 
sensitivity analyses that allows for exploration of disparities for high 
aerosol exposure. 

This study has the following limitations. One is the spatial scale; 

Fig. 5. The relative excess exposure (%) to aerosol pollution for race-ethnicity groups compared to the non-Hispanic White subgroup by (a) urbanicity and (b) 
economic status at the county subdivision level in New York State. Circles indicate a statistically significant difference between distributions (each vs. non-Hispanic 
White) and crosses otherwise. 

A.A. Nair et al.                                                                                                                                                                                                                                  



Environmental Research 239 (2023) 117246

10

here, the finest spatial resolution is the county subdivision level. This 
choice is for two reasons: (1) for spatial levels smaller than the county 
subdivision, demographic estimates are subject to large margins of error 
due to the lower population of subgroups and (2) the model simulated 
aerosol concentrations presently do not resolve the tract level exposures. 
This coarser resolution may smooth out true exposures and their dis-
parities at smaller scales, all the way to the individual-level. For UFP, 
however, with the impact of regional nucleation events and the longer 
overall (when the PM2.5 condensation sink is low) atmospheric lifetime, 
its concentration is expected to be smoothed out over several kilometers. 
In areas with local UFP sources, such as near roadways and airports, the 
coarser resolution may result in underestimation of the exposure. Clark 
et al. (2022) found that national air pollution exposure disparity esti-
mates based on state and county scale data could substantially under-
estimate those estimated using tract-level or finer scales. The disparities 
calculated in this study may therefore be underestimates. Also, in using 
the five-year ACS estimates for socio-demographic variables, we cannot 
account for changes in the population at the county subdivision level 
occurring during the period of the study. Two, owing to the dearth of 
comprehensive long-term in situ measurements at present, we currently 
have to rely on physically and chemically consistent models of atmo-
spheric chemistry and transport that have been extensively validated 
with laboratory and available in situ observations for studying aerosol 
exposure impacts on non-localized scales from global to national to 
regional scales. The current dearth of UFP measurements also means 
that there remains large scope for improvement of land-use regression 
(LUR) and other spatiotemporal exposure models, satellite inferences, 
and hybrid modeling for UFP exposure assessment. There is hope, 
however, for improved exposure assessment and consequent health 
impacts in the coming years through the newly established long-term, 
ground-based high time-resolution ASCENT (Atmospheric Science and 
Chemistry mEasurement NeTwork) air quality monitoring network, 
which will start to address these knowledge gaps in the US. Three, the 
exposure disparities estimated here connect to residency and do not 
include mobility and other sources of personal exposure (such as 
smoking, indoor appliances, or air filtration systems) that unfortunately 
are not available. There may be confounding factors resulting in a dif-
ference between aerosols outdoor and indoors, where an individual 
spends most of their time on average. Underlying psycho-socioeconomic 
reasons for the identified disparities may also be important when con-
necting exposure disparities to health disparities. 

5. Conclusions 

We found that in New York State during 2013–2020, UFP and PM2.5 
show no spatiotemporal correlation, with PM2.5 typically declining but 
UFP increasing since 2017 and being seasonally out-of-phase with 
PM2.5. This study uncovered that the race-ethnicity disparities for ul-
trafine particle exposure are large and persistent, across urbanization 
levels, and that these disparities have increased and even widened 
during periods of UFP reductions. This is unlike that for fine particles 
(PM2.5), disparities for which have declined over time and plateaued 
thereafter despite decreasing PM2.5 concentrations. Invariably, a mi-
nority race-ethnicity and/or low-income group is exposed to the largest 
aerosol exposure disparity. In the 10% worst jurisdictions in terms of 
aerosol exposure, reside larger proportions of race-ethnicity minorities 
than expected. Income disparities magnify the race-ethnicity disparities 
uncovered in aerosol exposure. These aerosol exposure disparities by 
race-ethnicity were much larger, more disproportionate, and unabating 
over time for UFP compared to PM2.5 across various income strata and 
levels of urbanicity. 
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